• 제목/요약/키워드: Tensile Property

검색결과 1,283건 처리시간 0.025초

냉간단조 금형 WC-Co합금의 인장시험방법 개발 및 물성평가 (Development of Uniaxial Tensile Test Method to Evaluate Material Property of Tungsten Carbide-Cobalt Alloys for Cold Forging Dies)

  • 권인우;서영호;정기호
    • 소성∙가공
    • /
    • 제27권6호
    • /
    • pp.370-378
    • /
    • 2018
  • Cold forging, carried out at room temperature, leads to high dimensional accuracy and excellent surface integrity as compared to other forging methods such as warm and hot forgings. In the cold forging process, WC-Co (Tungsten Carbide-Cobalt) alloy is the mainly used material as a core dies because of its superior hardness and strength as compared to other structural materials. For cold forging, die life is the most significant factor because it is directly related to the manufacturing cost due to periodic die replacement in mass production. To investigate die life of WC-Co alloy for cold forging, mechanical properties such as strength and fatigue are essentially necessary. Generally, uniaxial tensile test and fatigue test are the most efficient and simplest testing method. However, uniaxial tension is not efficiently application to WC-Co alloy because of its sensitivity to alignment of the specimen due to its brittleness and difficulty in thread machining. In this study, shape of specimen, tools, and testing methods, which are appropriate for uniaxial tensile test for WC-Co alloy, are proposed. The test results such as Young's modulus, tensile strength and stress-strain curves are compared to those in previous literature to validate the proposed testing methods. Based on the validation of test results it was concluded that the newly developed testing method is applicable to other cemented carbides like Titanium carbides with high strength and brittleness, and also can be utilized to carry out fatigue tests for further investigation on die life of cold forging.

5083 Al합금 용접재의 조직 및 저온 인장성질메 미치는 시효처리의 영향 (Effect of Aging Treatment on the Microstructure and Low Temperature Tensile Properties in 5083 Aluminum Alloy Weldments)

  • 이태청;이해우;주동원;이준희;성장현
    • 열처리공학회지
    • /
    • 제13권1호
    • /
    • pp.1-9
    • /
    • 2000
  • The microstructural characteristics and low temperature tensile properties between $25^{\circ}C$ and $-196^{\circ}C$ for as-welded and age hardened specimen by using Al 5083-H321 for base metal, 5083-5356 and 5083-4043 weldments have been investigated. The hardness of 5083-5356 weldment decreases with aging treatment, whereas the weld region of 5083-4043 weldment shows remarkable increase in hardness after aging due to the precipitation of fine Si particle at the grain boundaries and interiors. Low temperature tensile properties of 5083 AI base metal, 5083-5356 and 5083-4043 weldments appear to be the increment of tensile strengths and elongations at the room temperature and $-196^{\circ}C$, while the decrement of tensile properties around $-50^{\circ}C$ is shown. Through the observation of fine serration to fracture in the stress-strain curve and tensile fractography, the increment of localized deformation leading to promote the neck initiation and the increment of the dimple size cause to decrease in tensile strengths and elongations around $-50^{\circ}C$. For the tensile specimen of the 5083 base metal, 5083-5356 and 5083-4043 weldments, the reason to increase in elongation after solution and aging treatment is the diminishment of fine pit, the resolution of Mg into the matrix and the spheridization of the eutectic Si.

  • PDF

인두조직의 점 탄성특성의 수학적모델링에 관한 연구 (A Study on the Mathematical Modeling of Human Pharyngeal Tissue Viscoelasticity)

  • 김성민;김남현
    • 대한의용생체공학회:의공학회지
    • /
    • 제19권5호
    • /
    • pp.495-502
    • /
    • 1998
  • Y.C. Fung[1]에 의한 연조직의 점탄성에 관한 수학적 모델이론 (Fung's Quasi-linear vlscoelastic theory)을 이용하여 인간의 인두조직의 점탄성(vlscoelatlcity)특성을 측정하기 위하여 반복성하중(cyclic load) ,응력완화 (tensile stress relaxation), incremental load, 그리고 일축성인장 (uniaxial tensile) 시험 등을 실시하였다. 실험적으로 측정한 인두조직의 점탄성특성이 이미 조사된 다른 조직의 점탄성특성과 정량적으로 비교되었다. 인두조직의 점탄성특성의 정량화를 위하여 Y.C.Fung의 수학적 모델이 적용되었는데 응력완화(tensile stress relaxation) 시험 측정결과로부터 도출된 표준화된 응력완화(reduced stress relaxation)함수 G(t)와 일축성인장(uniaxial tensile)시험에서 도출된 탄성반응(elastic response)함수 5(t)를 이용하여 시간에 따른 응력의 궤적을 산출하여 이를 반복성 하중(cyclic load)실험에서 측정된 결과와 비교, 분석하였다. 이러한 인두조직의 점탄성특성에 관한 연구결과는 향후 유한요소를 이용한 인두의 생체역학적 모델의 기본 데이터로 이용될 수 있다.

  • PDF

진공주조법에 의한 TiNi 형상기억합금 강화 6061Al 지적 복합재료의 계면 및 인장 특성 (Interfacial and Tensile Properties of TiNi Shape Memory Alloy reinforced 6061 Al Smart Composites by vacuum casting)

  • 박광훈;박성기;신순기;박영철;이규창;이준희
    • 한국재료학회지
    • /
    • 제11권12호
    • /
    • pp.1057-1062
    • /
    • 2001
  • We investigated the change of mechanical properties for TiNi shape memory alloy by heat treatment. 6061Al matrix composites with TiNi shape memory alloy as reinforcement were fabricated by vacuum casting. TiNi alloy has the maximum tensile strength at 673K treated and there is no change of tensile strength and hardness at 448K treated. The composites, prepared by vacuum casting, showed good interface bonding by vacuum casting. It was about 3$\mu\textrm{m}$ of thickness of the diffusion layer. Tensile strength of the composite was in higher than that of 6061Al alloy as increased value of about 70MPa at room temperature and about 110MPa at 363K. We thought that the increase of the tensile strength at 363K was due to reverse transformation of the TiNi shape memory alloy.

  • PDF

MMT(Montmorillonite)를 적용한 Chopped Strand Glass Fiber-Vinylester 복합재의 인장특성 연구 (A Study on Tensile Property of MMT (Montmorillonite) Reinforced Chopped Strand Glass Fiber/Vinylester Composites)

  • 정용화;구자호;이위로;이경엽
    • 한국생산제조학회지
    • /
    • 제21권4호
    • /
    • pp.619-624
    • /
    • 2012
  • In this study, MMT/fiber/polymer composites were fabricated by impregnating chopped strand glass mat into a vinylester resin mixed with clay. Tensile tests has been performed by using a universal testing machine to determine the effect of MMT addition on the tensile properties of MMT/chopped strand glass fiber/vinylester composites. And some pictures which are magnified cross section of breaking parts are has been taken by using a FE-SEM to confirm the behavior at breaking. The contents ratio of MMT applied in the composites were 0.5, 1.0, 1.5, and 2.0 wt% respectively. It has been found that the tensile strength and elastic modulus of MMT/chopped strand glass fiber/vinylester composites were improved at a proper content of MMT. Tensile strength and elastic modulus were maximized at a content of 1.0 wt% due to most effective dispersion of MMT. On the contrary, the failure strain was increased as MMT content was increased.

GTD-111DS 소재의 고온 인장 특성 평가 (Evaluation of High Temperature Tensile Properties in GTD-111DS)

  • 박홍선;김형익;이영민;석창성;김문영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1358-1362
    • /
    • 2005
  • The Ni-base superalloy GTD-111DS was designed in the 1970s and is widely used as the material of the first stage blade under a severe combination of temperature and pressure in gas turbines. But because GTD-111DS is distributed in the shape of blade and blade has a unique figure and many cooling channels, it is hard to manufacture the test specimen. In this reason, there are little data on the microstructure and mechanical properties of the alloy. Therefore through the microstructure analysis, present paper observed that the shape of $\gamma{'}$ did not change even if aging time was increased but the amount and volume of the deposition of secondary $\gamma{'}\;rose\;and\;secondary\;\gamma{'}\;grew\;among\;primary\;\gamma{'}$. Also, by tensile test for different temperature, there was difference between yield strength and tensile strength in room temperature on heat treatment and extracting region but the more increasing temperature, the more decreasing difference between yield strength and tensile strength.

  • PDF

셀룰로오스/키토산 및 세리신/키토산 복합화필름의 역학특성 (Mechanical Properties of Cellulose/Chitosan and Sericin/Chitosan Blend Films)

  • 윤흥수;이의소;김승일;윤호규;고교청구
    • 한국염색가공학회지
    • /
    • 제17권1호
    • /
    • pp.30-37
    • /
    • 2005
  • The tensile properties, acetic acid solubility and degree of swelling in distilled water of cellulose/chitosan and sericin/chitosan film blended by mixing chitosan acetic acid solution with cellulose solution or sericin solution were investigated and the effect of crosslinking agent on solubility and degree of swelling were also considered. From the experimental results, the model of intermolecular bond is proposed. Tensile modulus of 100% cellulose film is high but the tensile strength and elongation are low. The elongation of 100% chitosan film is high but tensile modulus and strength is low. But it is possible to make film having same or higher tensile strength and modulus compared to that of 100% cellulose film by mixing cellulose and chitosan or by mixing sericin and chitosan. Chitosan is solved in 5vol % acetic acid solution but cellulose and sericin are not solved. Degree of swelling of chitosan in distilled water is higher than that of cellulose and sericin. Lower than 40wt% chitosan content, the solubility of cellulose/chitosan film in 5vol % acetic acid solution shows lower expected value but higher in case of sericin/chitosan film.

고압 금형주조용 Al-9%Si-0.3%Mg 합금의 Fe, Mn 함량이 인장특성에 미치는 영향 (Effect of Fe and Mn Contents on the Tensile Property of Al-9%Si-0.3%Mg Alloy for High Pressure Die Casting)

  • 김헌주
    • 한국주조공학회지
    • /
    • 제31권1호
    • /
    • pp.18-25
    • /
    • 2011
  • Effect of Fe and Mn contents on the tensile properties has been studied in Al-9wt%Si-0.3wt%Mg alloy. As Fe content of Al-9wt%Si-0.3wt%Mg-0.5wt%Mn alloy increased from 0.15wt% to 0.45wt%, tensile strength of as-cast alloy decreased from 192 MPa to 174 MPa, and elongation of the alloy also decreased from 4.8% to 4.2%. Decrease of these properties can be explained as the formation of plate shape, ${\beta}-Al_5FeSi$ phase with high Fe/Mn ratio of the alloy. However when Mn content of Al-9wt%Si-0.3wt%Mg-0.45wt%Fe alloy increased from 0.3wt% to 0.5wt%, tensile strength of T6 aged alloy increased from 265 MPa to 275 MPa, and elongation of the alloy increased from 2.3% to 3.6%. These improvements attribute to chinese script, ${\alpha}-Al_{15}(Mn,Fe)_3Si_2$ phase shape-modified from ${\beta}-Al_5FeSi$ phase with low Fe/Mn ratio of the alloy.

AISI 51B20강의 인장 및 충격특성에 미치는 오스테나이트화 온도와 퀜칭·템퍼링 온도의 영향 (Effect of Austenitizing and Quenching·Tempering Temperatures on Tensile and Impact Properties of AISI 51B20)

  • 김헌주
    • 열처리공학회지
    • /
    • 제24권6호
    • /
    • pp.327-337
    • /
    • 2011
  • Effects of microstructural change, tensile properties and impact property according to the change of austenitizing temperature and tempering temperature of AISI 51B20 steel were examined. Regardless of austenite grain size, lath martensite with needle and packet shapes was found at tempering temperature of $300^{\circ}C{\sim}400^{\circ}C$. The needles of lath martensite changed to parallel packet at tempering temperature of $450^{\circ}C{\sim}600^{\circ}C$. As tempering temperature increased, tensile strength, yield strength and hardness decreased, while elongation, ratio of reduction area and Charpy impact energy increased. Grain size increased when quenching temperature was $930^{\circ}C$. Grain size had prominent effect on the mechanical properties of AISI 51B20 steel. Ratio of tensile strength/yield strength and yield strength autenitized at $880^{\circ}C$ followed by tempering at $350^{\circ}C{\sim}450^{\circ}C$ showed higher values than that of autenization at $930^{\circ}C$ due to fine grain size.

Estimation of rock tensile and compressive moduli with Brazilian disc test

  • Wei, Jiong;Niu, Leilei;Song, Jae-Joon;Xie, Linmao
    • Geomechanics and Engineering
    • /
    • 제19권4호
    • /
    • pp.353-360
    • /
    • 2019
  • The elastic modulus is an important parameter to characterize the property of rock. It is common knowledge that the strengths of rocks are significantly different under tension and compression. However, little attention has been paid to the bi-modularity of rock. To validate whether the rock elastic moduli in tension and compression are the same, Brazilian disc, direct tension and compression tests were conducted. A horizontal laser displacement meter and a pair of vertical and transverse strain gauges were applied. Four types of materials were tested, including three types of rock materials and one type of steel material. A comprehensive comparison of the elastic moduli based on different experimental results was presented, and a tension-compression anisotropy model was proposed to explain the experimental results. The results from this study indicate that the rock elastic modulus is different under tension and compression. The ratio of the rock elastic moduli under compression and tension ranges from 2 to 4. The rock tensile moduli from the strain data and displacement data are approximate. The elastic moduli from the Brazilian disc test are consistent with those from the uniaxial tension and compression tests. The Brazilian disc test is a convenient method for estimating the tensile and compressive moduli of rock materials.