• Title/Summary/Keyword: Tensile Fatigue

Search Result 777, Processing Time 0.026 seconds

Characteristic of Crack Growth and Progress on the Contact Fatigue (In a case of Metal) (접촉피로에 있어서 균열의 발생과 진전특성)

  • Yu, Seong-Geun
    • Korean Journal of Materials Research
    • /
    • v.7 no.1
    • /
    • pp.62-68
    • /
    • 1997
  • In the first part of the paper, the crack growth process in rolling contact fatigue has been investigated on ring type plate specimens, in which crack growth is two dimensional and cracks are observed on the side surface of the specimens. The results have shown that cracks are initated from the contact surface in tensile mode in the direction approximately normal to the contact surface and after some short length of growth, shear mode growth occurs from the tip of the crack and it grows until the separation of the surface layer, namely flakung type failure, occurs. In the second part, mode U fatigue crack growth tests have been made by using an apparatus designed based on the concept that the subsurface fatigue crack growth in rolling contact fatigue is the mode U fatigue crack growth under the stress state where the tensile mode growth is suppressed by compression stress. The rest results have shown that the mode U fatigue crack growth occurs if the superposed compression stress is enough to suppress the tensile mode growth.

  • PDF

Development of Fatigue Model for Asphalt Black Base by Accelerated Pavement Testing (포장가속시험을 이용한 아스팔트 안정처리층의 피로모형 개발)

  • Yeo, In-Soo;Suh, Young-Chan;Mun, Sung-Ho
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.11-20
    • /
    • 2007
  • This thesis develops a fatigue model for the asphalt black base using the APT(Accelerated Pavement Testing) and analyzes the correlation of the APT analysis result with results of previous laboratory tests. For the APT testing, aggregate of the maximum grain size of 25mm(BB-3) was used as the material for the asphalt black base. The result of the APT revealed that the variable of the fatigue model, i.e. the maximum tensile stress on the bottom part of the pavement, increased as the number of loading increased while the modulus of elasticity for the pavement layer decreased gradually. The tensile strain was obtained from a strain gauge, and it was used to derive the values of $k_1=1.29{\times}10^{-6}$ and $k_2=3.02$ from the basic equation of the asphalt fatigue model, $N_f=k_1(\frac{1}{\epsilon})^{k_2}$. The fatigue life predicted from the asphalt fatigue model was greater than that obtained from laboratory experiments, given the same tensile strain. Additionally, a theory to estimate the remaining life of the pavement was developed using FWD, a non-destructive experiment.

  • PDF

The Effect of Residual Stress on Stress Intensity Factor and Fatigue Crack Growth Rate (잔류응력이 응력세기계수와 피로균열성장율에 미치는 영향)

  • Kang-Yong,Lee;Hong-Key,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.1
    • /
    • pp.43-47
    • /
    • 1984
  • The purpose of this paper is to investigate theoretically the effect of residual stress due to welding in stress intensity factor of a plate containing the Model I Crack in different crack size and location, and on fatigue crack growth rate. The initiation of crack is found to be possible only in the region of tensile residual stress. The most dangerous crack has the values of d/b and a/b equal to about 0.6 and 1.0, respectively, where d/b is the ratio of distance from the crack to welding bead and the width of tensile residual stress region and a/b is the ratio of crack length and tensile residual stress region. The crack perpendicular to and on the line of welding bead and with a/b equal to about 0.6 has maximum stress intensity factor. The theoretical fatigue crack growth rate under residual stress and applied stress, which is obtained from Forman's Law by stress superposition, is relatively in good agreement with Glinka's[8] experimental value. The fatigue crack growth is shown to be retarded due to residual stress distribution.

  • PDF

Fatigue characteristics of spot welding between high strength steel and galvanized steel sheet (고장력 강판과 아연도금 강판문의 점용접 피로특성)

  • 서창민;강성수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.747-754
    • /
    • 1988
  • High strength steels (HS) of dual phase and monogalvanized steel sheets (GA ; plated plane, GAB ; bare plane0 were used to investigate the fatigue strengths of four kinds of single-spot-welded joint specimen under tensile-shear repeated load. The specimen is classified as the same mating metal specimen (HS*HS, GA*GAB) and different mating metal specimen (HS*GA, HS*GAB). Some of the results are ; (1) Static tensile load of single-spot-welded joint specimens is proportional to tensile strength of metal and rigidity of mating metal sheet. (2) Fatigue life of HS*HS specimens increased about 20% longer than that of GA*GAB specimens in low cycle range. (3) In different mating metal specimens, the fatigue life of HS*GA specimens increased about 84% more that of HS*HS specimens in high cycle range.

Fracture Morphology of Degraded Historic Silk Fibers Using SEM (SEM을 이용한 출토 견섬유의 손상 형태에 관한 연구)

  • Bae, Soon Wha;Lee, Mee Sik
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.5
    • /
    • pp.667-675
    • /
    • 2013
  • After analyzing excavated $17-18^{th}$ century silk fibers through a scanning electron microscopy, we discovered seven different kinds of fracture morphology. Using Morton & Hearle fiber fracture morphology, we classified the findings into four different categories. Type I is tensile failure resulting from brittle fracture, granular fracture, and ductile fracture. Type II is fatigue failure caused by tensile fatigue, flex fatigue, and axial split (fibrillation). Type III is bacterial deterioration discovered only in excavated artifacts. Type IV is a combination of the three above. Humid underground conditions and the infiltration of bacteria caused the fibers to swell and weaken its interfibrillar cohesion. Fractures occur when drying and processing an excavated artifact that is already in a fragile condition. Therefore, one must minimize damage through a prompt cleaning process and make sure that the least possible force is exerted on the fabric during any treatment for repair and exhibition.

Effects of Onset Time of Fatigue and Cooling Rate on Hot Ductility of Plain Carbon Steel (탄소강의 열간 연성에 미치는 저주기 피로 시기와 냉각속도의 영향)

  • Park, Tae Eun;Lee, Un Hae;Son, Kwang Suk;Lee, Sung Keun;Kim, In Soo;Yim, Chang Hee;Kim, Donggyu
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.3
    • /
    • pp.210-217
    • /
    • 2010
  • The effects of cooling rate and onset time of fatigue test on hot ductility of plain carbon steels containing 0.06$\sim$0.8 wt.% carbon were investigated at various temperatures. The tensile tested specimen after fatigue strain during cooling showed higher hot ductility than the specimen fatigued and tensile-strained after cooling. With a decreasing cooling rate from solutionizing temperature to test temperature, hot ductility was increased in all temperature ranges, typically in the trough region, and the minimum point of ductility moved to a lower temperature. Also, the depth and width of the trough decreased with lowering the cooling rate.

Fatigue Life Prediction of Spot Welds in SPCC (냉간압연강판 점용접부의 피로수명예측)

  • 이용복
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.137-142
    • /
    • 1997
  • Spot welding has been used in the sheet metal joining processes because of its high productivity and convenience. In this study effects of welding conditions on the fatigue life and predicting methods of fatigue life of spot welded joint have been studied. Fatigue life was estimated by stress index parameter considering multiaxial stresses. Fatigue tests were conducted with the tensile-shear specimens using SPCC. Fatigue life of spot welded joint was influenced by welding currents and was predicted exactly with taking into account Stage III.

  • PDF

The Effects of the Testing Temperatures on the Mechanical Properties of the Stainless Steel(STS301CSP) for Flat Spring (박판 스프링용 스테인리스강재(STS301CSP)의 시험온도에 따른 기계적 특성평가)

  • 류태호;원시태;박상언;임철록
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.390-395
    • /
    • 2003
  • This study examined the effects of the testing temperature on the mechanical properties of the stainless steels (STS301CSP-3/4H and STS301CSP-H) for flat spring. Hardness test and fatigue test were performed at room temperature (2$0^{\circ}C$ Tensile testandcreeptestwere performed attemperature range 2$0^{\circ}C$~10$0^{\circ}C$. The micro-victors hardness values of STS301CSP-3/4H and STS301CSP-H were HV=443 and HV=488. respectively. The Elastic modulus, tensile strength, yield strength and strain of these materials were decreased with increasing testing temperature. respectively. The maximum creep strain for 100hr atcreep temperature (10$0^{\circ}C$~20$0^{\circ}C$ and creep stress (Tensile strength$\times$50%) of these materials were 0.53%~0.58%. The fatigue limit of STS301CSP-3/4H and STS301CSP-H were 64.5Kgf/mm$^2$ and 67.4Kgf/mm$^2$, respectively.

  • PDF

Evaluation of Characteristic Improvement of Waste-Polyethylene Asphalt Concrete (폐폴리에틸렌 필름 재활용 아스팔트 콘크리트의 특성 분석)

  • Kim, Kwang-Woo;Li, Xing-Fan;Jeong, Seung-Ho;Lee, Soon-Jae;Lee, Gi-Ho
    • International Journal of Highway Engineering
    • /
    • v.4 no.1 s.11
    • /
    • pp.161-170
    • /
    • 2002
  • This study is a fundamental research for recycling waste polyethylene film(WPF) in asphalt concrete for roadway pavement. The objective of this study is to develop technology of making waste polyethylene asphalt mixture and evaluate properties of the asphalt concrete containing WPF. Asphalt concrete for surface course of pavement was produced through an appropriate mix-design using dense-graded and gap-graded aggregates. Marshall mix design, indirect tensile strength test, wheel tracking test and tensile fatigue test were performed. Test result showed that some WPF asphalt mixtures had a high tensile property and good resistances against rutting and fatigue cracking, compared with normal asphalt mixture.

  • PDF

The Effects of the Tempering Temperatures on the Mechanical Properties of the Carbon Tool Steel(SK5M) for Flat Spring (박판 스프링용 탄소공구강대(SK5M)의 기계적 성질에 미치는 뜨임 온도의 영향)

  • Won S.T.;Sim K.S.;Lim C.R.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.95-96
    • /
    • 2006
  • This study examined the effects of the tempering temperatures($360-420^{\circ}C$) on the mechanical properties of the carbon tool steel (SK4M) for flat spring. Hardness test, tensile test and fatigue test were performed at room temperature($20^{\circ}C$). The tensile strength and yield strength of $390^{\circ}C\;and\;420^{\circ}C$ tempered SK5M were 0.93-0.97 times and 0.81-0.87 times those of $360^{\circ}C$ tempered SK5M, respectively. The fatigue limit of $360-420^{\circ}C$ tempered SK5M were 35-40% of tensile strength of $360-420^{\circ}C$ tempered SK5M, respectively.

  • PDF