• Title/Summary/Keyword: Tensile Failure

Search Result 1,272, Processing Time 0.023 seconds

Laminate Tensile Failure Strength Prediction using Stress Failure Criteria

  • Lee, Myoung Keon;Kim, Jae Hoon
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.6
    • /
    • pp.19-25
    • /
    • 2021
  • This paper presents a method that uses the stress failure criteria to predict the tensile failure strength of open-hole laminates with stress concentrations. The composite material used in this study corresponds to a 177 ℃ cured, carbon/epoxy unidirectional tape prepreg. The results obtained by testing ten different laminates were compared and analyzed to verify the tensile strength of the open-hole laminates predicted using the proposed stress failure criteria. The findings of this study confirm that the tensile strength predictions performed using the proposed method are generally accurate, except in cases involving highly soft laminates (10% of 0° ply).

Fracture properties and tensile strength of three typical sandstone materials under static and impact loads

  • Zhou, Lei;Niu, Caoyuan;Zhu, Zheming;Ying, Peng;Dong, Yuqing;Deng, Shuai
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.467-480
    • /
    • 2020
  • The failure behavior and tensile strength of sandstone materials under different strain rates are greatly different, especially under static loads and impact loads. In order to clearly investigate the failure mechanism of sandstone materials under static and impact loads, a series of Brazilian disc samples were used by employing green sandstone, red sandstone and black sandstone to carry out static and impact loading splitting tensile tests, and the failure properties subjected to two different loading conditions were analyzed and discussed. Subsequently, the failure behavior of sandstone materials also were simulated by finite element code. The good agreement between simulation results and experimental results can obtain the following significantly conclusions: (1) The relationship of the tensile strength among sandstone materials is that green sandstone < red sandstone < black sandstone, and the variation of the tensile sensitivity of sandstone materials is that green sandstone > red sandstone > black sandstone; (2) The mainly cause for the difference of dynamic tensile strength of sandstone materials is that the strength of crystal particles in sandstone material, and the tensile strength of sandstone is proportional to the fractal dimension; (3) The dynamic failure behavior of sandstone is greatly different from that of static failure behavior, and the dynamic tensile failure rate in dynamic failure behavior is about 54.92%.

Mechanical Properties of Different Anatomical Sites of the Bone-Tendon Origin of Lateral Epicondyle

  • Han, Jung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.1013-1021
    • /
    • 2001
  • A series of rabbit common extensor tendon specimens of the humeral epicondyle were subjected to tensile tests under two displacement rates (100mm/min and 10mm/min) and different elbow flexion positions 45°, 90°and 135°. Biomechanical properties of ultimate tensile strength, failure strain, energy absorption and stiffness of the bone-tendon specimen were determined. Statistically significant differences were found in ultimate tensile strength, failure strain, energy absorption and stiffness of bone-tendon specimens as a consequence of different elbow flexion angles and displacement rates. The results indicated that the bone-tendon specimens at the 45°elbow flexion had the lowest ultimate tensile strength; this flexion angle also had the highest failure strain and the lowest stiffness compared to other elbow flexion positions. In comparing the data from two displacement rates, bone-tendon specimens had lower ultimate tensile strength at all flexion angles when tested at the 10mm/min displacement rate. These results indicate that creep damage occurred during the slow displacement rate. The major failure mode of bone-tendon specimens during tensile testing changed from 100% of midsubstance failure at the 90°and 135°elbow flexion to 40% of bone-tendon origin failure at 45°. We conclude that failure mechanics of the bone-tendon unit of the lateral epicondyle are substantially affected by loading direction and displacement rate.

  • PDF

Progressive Failure Analysis and Strength Prediction based on Hashin Failure Criterion of Bolted Composite Joint (Hashin 파손이론을 이용한 복합재 볼트체결부의 점진적 파손 해석 및 강도 예측)

  • Kim, Seongmin;Kim, Pyunghwa;Doh, Sungchul;Kim, Hyounggun;Park, Jungsun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.936-938
    • /
    • 2017
  • In this paper, the progressive failure analysis of a bolted composite joint which is used in combustion tubes of projectiles and weapon systems is performed. Hashin's failure criterion is considered as fiber tensile failure mode, fiber compressive failure mode, matrix tensile failure mode, and matrix compressive failure mode for this analysis. And this criterion is used to make user subroutine, UMAT. Through the progressive failure analysis we predicted failure strength and compared failure strength with specimen test result.

  • PDF

Tensile strength of unidirectional CFRP laminate under high strain rate

  • Taniguchi, Norihiko;Nishiwaki, Tsuyoshi;Kawada, Hiroyuki
    • Advanced Composite Materials
    • /
    • v.16 no.2
    • /
    • pp.167-180
    • /
    • 2007
  • The tensile strength of unidirectional carbon fiber reinforced plastics under a high strain rate was experimentally investigated. A high-strain-rate test was performed using the tension-type split Hopkinson bar technique. In order to obtain the tensile stress-strain relations, a special fixture was used for the impact tensile specimen. The experimental results demonstrated that the tensile modulus and strength in the longitudinal direction are independent of the strain rate. In contrast, the tensile properties in the transverse direction and the shear properties increase with the strain rate. Moreover, it was observed that the strain-rate dependence of the shear strength is much stronger than that of the transverse strength. The tensile strength of off-axis specimens was measured using an oblique tab, and the experimental results were compared with the tensile strength predicted based on the Tsai-Hill failure criterion. It was concluded that the tensile strength can be characterized quite well using the above failure criterion under dynamic loading conditions.

Flexural and tensile properties of a glass fiber-reinforced ultra-high-strength concrete: an experimental, micromechanical and numerical study

  • Roth, M. Jason;Slawson, Thomas R.;Flores, Omar G.
    • Computers and Concrete
    • /
    • v.7 no.2
    • /
    • pp.169-190
    • /
    • 2010
  • The focus of this research effort was characterization of the flexural and tensile properties of a specific ultra-high-strength, fiber-reinforced concrete material. The material exhibited a mean unconfined compressive strength of approximately 140 MPa and was reinforced with short, randomly distributed alkali resistant glass fibers. As a part of the study, coupled experimental, analytical and numerical investigations were performed. Flexural and direct tension tests were first conducted to experimentally characterize material behavior. Following experimentation, a micromechanically-based analytical model was utilized to calculate the material's tensile failure response, which was compared to the experimental results. Lastly, to investigate the relationship between the tensile failure and flexural response, a numerical analysis of the flexural experiments was performed utilizing the experimentally developed tensile failure function. Results of the experimental, analytical and numerical investigations are presented herein.

Evaluation of Failure Strength of Woven CFRP Composite Plate Subject to Axial Load by Tan-Cheng Failure Criterion (Tan-Cheng 파손기준을 이용한 직물 CFRP 적층판의 원거리 하중에 대한 파괴강도 평가)

  • Kim, Sang-Young;Park, Hong-Sun;Kang, Min-Sung;Lee, Woo-Hyung;Choi, Jung-Hun;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.360-365
    • /
    • 2009
  • In the manufacture of CFRP(Carbon Fiber Reinforced Polymer Composite) composite structures, various independent components join by bolts and pins. Holes for bolts and pins have an effect on the failure strength of such structures, because those act as notches in structures. The failure characteristic of such structures are different from those of plain plate subject to remote load. In this paper, tensile properties of woven CFRP composite plates with laminates of $0^{\circ}$, $30^{\circ}$ and $45^{\circ}$ were obtained according to ASTM D 3039. By using obtained tensile failure strength and Tan-Cheng failure criterion, tensile failure strength of CFRP laminate with arbitrary fiber angle were evaluated. Also, the degradation of tensile properties by center hole(${\phi}10mm$) with a remote load was evaluated and the failure strengths were applied to Tan's failure criterion, similarly.

Infrared Thermographic Monitoring for Failure Characterization in Railway Axle Materials (철도차량 차축 재료의 파괴특성 적외선열화상 모니터링)

  • Kim, Jeong-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.116-120
    • /
    • 2010
  • The wheelset, an assembly of wheel and axle, is one of important parts in railway bogie, directly related with the running safety of railway rolling stock. In this investigation, the tensile failure behavior of railway axle materials was investigated. The tensile coupons were prepared from the actual rolling stock parts, which were operated over 20 years. The tensile testing was performed according to the KS guideline. During tensile testing, an infrared camera was employed to monitor temperature changes in specimen as well as demonstrate temperature contour in terms of infrared thermographic images. The thermographic images of tensile specimens showed comparable results with mechanical behavior of tensile materials. In this paper, the failure mode and behavior of railway axle materials were provided with the aid of infrared thermography technique.

Analyses of Fracture Tube Tearing using Gurson Model and Shear Failure Model (Gurson Model과 Shear Failure Model을 이용한 파쇄튜브의 찢어짐 해석)

  • Yang, Seung-Yong;Kwon, Tae-Su;Choi, Won-Mok
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.3
    • /
    • pp.280-285
    • /
    • 2008
  • Two kinds of failure model, that is, the Gurson model and a shear failure model were used for the finite element analyses of simple and notch tensile specimens and axial compression of a fracture tube with initial saw-cuts. The parameter values for the shear failure model were determined by a combined experimental and numerical analysis of the notch tensile specimens. After fitting the numerical parameters such as the yielding stress and the fracture shear strains, the Gurson model and the shear failure model were applied to the analysis of the fracture tube. Although the Gurson model and the shear failure model showed similar fracture behavior for the case of the tensile specimens, the respective results were different in the axial force and the crack growth rate of the fracture tube. That is, the shear failure model required more axial force to make the cracks propagate along the tube than the Gurson model. These are believed to show the lack of damage evolution process of the shear failure model. To decide which model is better in the tube analysis, experimental verification will be necessary.

Tensile Properties of Metal Plate Connector in Domestic Softwood Lumber (국산 침엽수 철물접합부의 인장하중 특성)

  • Shim, Kug-Bo;Park, Jung-Hwan;Lee, June-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.96-103
    • /
    • 2003
  • This study was conducted to evaluate the tensile properties of metal plate connector for the domestic major softwoods, such as Korean red pine, Korean white pine, and Japanese larch. The maximum tensile load of Korean red pine was 3,612kgf in AA type, it was 1.2 and 1.7 times higher load than that of Japanese larch and Korean white pine. In EA type, it was 2,704kgf, and 1.1 and 1.5 times higher than the loads of Japanese larch and Korean white pine. The failure modes of metal plate connector were metal plate withdrawal, plate tensile failure, and wood shear block failure. The failure mode of Korean red pine connector was tensile failure of plate, that is reason of the high tensile load resistance for metal plate connections in Korean red pine. The mechanical properties of metal plate connector could be predicted by the Foschi model parameter. In the initial stage, the Korean red pine connector was stiffer than the other species. The design values for metal plate connector per tooth was 25, 22, and 15kgf for Korean red pine, Japanese larch, and Korean white pine in AA type and 19, 17, and 13kgf in EA type.