• Title/Summary/Keyword: Tendon system

Search Result 219, Processing Time 0.038 seconds

Chaotic particle swarm optimization in optimal active control of shear buildings

  • Gharebaghi, Saeed Asil;Zangooeia, Ehsan
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.347-357
    • /
    • 2017
  • The applications of active control is being more popular nowadays. Several control algorithms have been developed to determine optimum control force. In this paper, a Chaotic Particle Swarm Optimization (CPSO) technique, based on Logistic map, is used to compute the optimum control force of active tendon system. A chaotic exploration is used to search the solution space for optimum control force. The response control of Multi-Degree of Freedom (MDOF) shear buildings, equipped with active tendons, is introduced as an optimization problem, based on Instantaneous Optimal Active Control algorithm. Three MDOFs are simulated in this paper. Two examples out of three, which have been previously controlled using Lattice type Probabilistic Neural Network (LPNN) and Block Pulse Functions (BPFs), are taken from prior works in order to compare the efficiency of the current method. In the present study, a maximum allowable value of control force is added to the original problem. Later, a twenty-story shear building, as the third and more realistic example, is considered and controlled. Besides, the required Central Processing Unit (CPU) time of CPSO control algorithm is investigated. Although the CPU time of LPNN and BPFs methods of prior works is not available, the results show that a full state measurement is necessary, especially when there are more than three control devices. The results show that CPSO algorithm has a good performance, especially in the presence of the cut-off limit of tendon force; therefore, can widely be used in the field of optimum active control of actual buildings.

Analytical investigation on lateral load responses of self-centering walls with distributed vertical dampers

  • Huang, Xiaogang;Zhou, Zhen;Zhu, Dongping
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.355-366
    • /
    • 2019
  • Self-centering wall (SCW) is a resilient and sustainable structural system which incorporates unbonded posttensioning (PT) tendons to provide self-centering (SC) capacity along with supplementary dissipators to dissipate seismic energy. Hysteretic energy dissipators are usually placed at two sides of SCWs to facilitate ease of postearthquake examination and convenient replacement. To achieve a good prediction for the skeleton curve of the wall, this paper firstly developed an analytical investigation on lateral load responses of self-centering walls with distributed vertical dampers (VD-SCWs) using the concept of elastic theory. A simplified method for the calculation of limit state points is developed and validated by experimental results and can be used in the design of the system. Based on the analytical results, parametric analysis is conducted to investigate the influence of damper and tendon parameters on the performance of VD-SCWs. The results show that the proposed approach has a better prediction accuracy with less computational effects than the Perez method. As compared with previous experimental results, the proposed method achieves up to 60.1% additional accuracy at the effective linear limit (DLL) of SCWs. The base shear at point DLL is increased by 62.5% when the damper force is increased from 0kN to 80kN. The wall stiffness after point ELL is reduced by 69.5% when the tendon stiffness is reduced by 75.0%. The roof deformation at point LLP is reduced by 74.1% when the initial tendon stress is increased from $0.45f_{pu}$ to $0.65f_{pu}$.

Feasibility Study of Submerged Floating Tunnels Moored by an Inclined Tendon System

  • Won, Deokhee;Kim, Seungjun
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1191-1199
    • /
    • 2018
  • Concepts of submerged floating tunnels (SFTs) for land connection have been continuously suggested and developed by several researchers and institutes. To maintain their predefined positions under various dynamic environmental loading conditions, the submerged floating tunnels should be effectively moored by reasonable mooring systems. With rational mooring systems, the design of SFTs should be confirmed to satisfy the structural safety, fatigue, and operability design criteria related to tunnel motion, internal forces, structural stresses, and the fatigue life of the main structural members. This paper presents a feasibility study of a submerged floating tunnel moored by an inclined tendon system. The basic structural concept was developed based on the concept of conventional cable-stayed bridges to minimize the seabed excavation, penetration, and anchoring work by applying tower-inclined tendon systems instead of conventional tendons with individual seabed anchors. To evaluate the structural performance of the new type of SFT, a hydrodynamic analysis was performed in the time domain using the commercial nonlinear finite element code ABAQUS-AQUA. For the main dynamic environmental loading condition, an irregular wave load was examined. A JONSWAP wave spectrum was used to generate a time-series wave-induced hydrodynamic load considering the specific significant wave height and peak period for predetermined wave conditions. By performing a time-domain hydrodynamic analysis on the submerged floating structure under irregular waves, the motional characteristics, structural stresses, and fatigue damage of the floating tunnel and mooring members were analyzed to evaluate the structural safety and fatigue performance. According to the analytical study, the suggested conceptual model for SFTs shows very good hydrodynamic structural performance. It can be concluded that the concept can be considered as a reasonable structural type of SFT.

Performance Assessment of Precast Concrete Segmental Bridge Columns with Shear Resistance Connecting Structure (전단저항 연결체를 갖는 프리캐스트 세그먼트 교각의 성능평가)

  • Kim, Tae-Hoon;Kim, Young-Jin;Kim, Seong-Woon;Shin, Hyun-Mock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.591-601
    • /
    • 2008
  • The purpose of this study was to investigate the performance of precast concrete segmental bridge columns with shear resistance connecting structure. The system can reduce work at a construction site and makes construction periods shorter. A model of precast concrete segmental bridge columns with shear resistance connecting structure was tested under a constant axial load and a cyclically reversed horizontal load. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. An bonded or unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly modified to predict the inelastic behaviors of segmental joints. The proposed numerical method gives a realistic prediction of performance throughout the loading cycles for several test specimens investigated.

Double-bundle Anterior Cruciate Ligament Reconstruction using Autogenous Hamstring Grafts (이중 다발 자가 슬괵건을 이용한 전방십자인대 재건술)

  • Choi, Nam-Yong;Nam, Won-Sik;Yang, Young-Jun;Han, Chang-Hwan;Moon, Chan-Woong;Kwon, Jae-Young;Song, Hyun-Seok
    • Journal of the Korean Arthroscopy Society
    • /
    • v.12 no.2
    • /
    • pp.112-117
    • /
    • 2008
  • Purpose: Double-bundle reconstruction of anterior cruciate ligament(ACL) has the advantage of restoring the isometry and original function of ACL. The purpose of this study is to evaluate the clinical results following double-bundle reconstruction of ACL using autogenous hamstring grafts through an accessory anteromedial portal. Materials and Methods: From January 2005 to July 2006, sixty patients(52 males, 8 females) underwent double-bundle ACL reconstruction using autogenous hamstring tendons..The mean age was 31.7 years($20{\sim}51$ years). The mean follow up period was 13.4 months($12{\sim}16$ months). We made a horizontal-oblique skin incision just medial to tibial tuberosity and harvested semitendinosus and gracilis tendon. Tibial tunnel for posterolateral bundle was made near its anatomical position. By modifying an anatomic reconstruction of ACL by Yasuda et al., we made a femoral tunnel for posterolateral bundle through accessory anteromedial portal. Tunnels for anteromedial bundle were made with conventional method. We reconstructed anteromedial bundle with semitendinosus tendon and posterolateral bundle with gracilis tendon. Clinical results at last follow up were evaluated by range of motion, extent of anterior displacement(KT-1000 arthrometer), pivot-shift test. Functional evaluation of clinical outcomes were evaluated by Lysholm score and modified Feagin Scoring System. Results: There was no limitation of motion of knee joint at last follow up. Mean side to side difference of anterior displacement of tibia by KT-1000 arthrometer was improved from 8.4 mm preoperatively to 1.7 mm postoperatively(p<0.05). Average Lysholm score was improved from 64.1 preoperatively to 92.2 postoperatively(p<0.05). In modified Feagin Scoring System, 90% of cases were rated as good or excellent. Conclusion: Double-bundle reconstruction of ACL using autogenous hamstring grafts through accessory anteromedial portal results in good clinical outcomes.

  • PDF

Constructability Effect of HDPE Greased Strand Applying to Post-tensioning in Reactor Containment Building (피복텐던을 적용한 원자로건물 포스트텐셔닝 시공효율성 분석)

  • Bang, Chang-Joon;Park, Jong-Hyok;Lee, Byong-Soo;Kim, Seok-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.169-170
    • /
    • 2012
  • It is analyzed that constructability of post-tensioning system applying HDPE greased strand that is greased and coated by high density polyethylene on a bare strand in reactor containment building. The improvement of corrosion resistance by greasing and HDPE coating on a strand makes transportation, handling and installation of tendon to be easier. Therefore, serial and repetitive process of post-tensioning composed of construction preparation, tendon installation, stressing and anchoring, grease injection could be improved parallel and lumping process of installation and grouting, stressing and anchoring.

  • PDF

Analytical Study on Precast Segmental Prestressed Concrete Bridge Piers (조립식 프리스트레스트 콘크리트 교각에 관한 해석적 연구)

  • Kim, Tae-Hoon;Jin, Byeong-Moo;Kim, Young-Jin;Shin, Hyun-Mock
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.178-181
    • /
    • 2006
  • The purpose of this study is to investigate the inelastic behavior of precast segmental prestressed concrete bridge piers. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. An unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly developed to predict the inelastic behaviors of segmental joints. The proposed numerical method for the inelastic behavior of precast segmental prestressed concrete bridge piers is verified by comparison with reliable experimental results.

  • PDF

Cycle Behavior of Exterior Joint of Flat Plate Slab and Column (포스트 텐션 플랫 플레이트 외부 접합부의 이력 거동)

  • Cho Jong;Ha Sang Su;Han Sang Whan;Lee Li-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.239-242
    • /
    • 2005
  • The purpose of this research was focused on substantiating an effects of tendon-layouts and compressed stress($=f_{pc}$) induced by post-tensioning on seismic performance of post-tensioned flat plate slab-column connection designed as non-participating system. To accomplish this purpose, an experimental research of flat plate exterior slab-column connections subjected to gravity load and reversed lateral displacement history are presented. As a result, tendon-layout is a main variable to influence failure mechanism, dissipated energy and lateral deformation capacity. Furthermore, compressed stress ($=f_{pc}$) induced by post-tensioning enhanced the seismic performance of flat plate slab.

  • PDF

Development of Analysis Technique for Structural Behavior of Containment with Bonded-Type Tendons (CANDU Type) (원전 부착식 텐던 격납건물의 구조거동 분석기법 개발 I-CANDU형)

  • Lee, Sang-Keun;Park, Sang-Soon;Lee, Sang-Min;Cho, Myong-Seok;Song, Young-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.643-646
    • /
    • 2004
  • The posttensioning system of nuclear containment have to be verified its structural integrity by the periodic inspection because the structural behavior of the containment is changed by the variation of the physical property of concrete and tendon as time passes. In this study a program 'SAPONC-CANDU' which is able to monitor and analysis the micro structural behavior of the domestic CANDU type containment at all times was developed. The readings of vibrating-wire strain gauges embedded into the concrete of containment were used as input data for operating the program. This program provides the long-term prediction values and bands of the concrete strain due to the time dependent factors of the concrete and tendon of the domestic CANDU type containment.

  • PDF

Nonlinear Finite Element Analysis of Precast Segmental Prestressed Concrete Bridge Columns (조립식 프리스트레스트 콘크리트 교각의 비선형 유한요소해석)

  • Kim, Tae-Hoon;Jin, Byeong-Moo;Kim, Young-Jin;Shin, Hyun-Mock
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.292-299
    • /
    • 2006
  • The purpose of this study is to investigate the inelastic behavior of precast segmental prestressed concrete bridge columns. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. An unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly developed to predict the inelastic behaviors of segmental joints. The proposed numerical method for the inelastic behavior of precast segmental prestressed concrete bridge columns is verified by comparison with reliable experimental results.

  • PDF