• Title/Summary/Keyword: Temporary Scaffolding

Search Result 25, Processing Time 0.024 seconds

An Experimental Study on the Safety of Temporary short pipe Scaffolding (가설 단관 비계의 안전성에 대한 실험적 연구)

  • 채원규
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.4
    • /
    • pp.85-91
    • /
    • 1994
  • In this thesis, the fracture tests and structural analysis were performed on a series of temporary scaffolding to investigate the variation of strength and the safety of temporary scaffolding. The specimens were of height 270cm and width 50cm and their span was 120cm. The joint loading and member loading were used in the tests, respectively. In these tests, the fracture mode of temporary scaffolding, relationships between the loading and the flexural strain of the specimens were observed. According to the comparison between the test results and the structural analysis results, the effects of the vertical loads and horizontal loads on temporary scaffolding and the safety of temporary scaffolding were studied.

  • PDF

Building Information Modeling for Temporary Structure Planning and Safety Analysis (BIM을 활용한 가설물 계획 및 안전 관리)

  • Kim, Kyungki;Cho, Yong Kwon;Park, Man-Woo
    • Journal of KIBIM
    • /
    • v.6 no.2
    • /
    • pp.12-18
    • /
    • 2016
  • The entire construction safety is significantly influenced by proper uses of temporary structures. However, in current practices, temporary structures are used without sufficient planning and analysis on their impact on safety. Consequently, problems in worker safety and loss of productivity are frequently caused related to temporary structures. This paper introduces an approach that uses Building Information Modeling (BIM) to automatically create temporary structures as part of construction plans and identifies potential safety hazards related to the temporary structures. In this study, the type of temporary structure is limited to scaffolding. Automation algorithms were developed and applied to (1) analyze daily construction site conditions (2) create required scaffolding objects, and (3) identify potential safety hazards related to scaffolding. A case study using a real-world construction project demonstrated that scaffolding objects were properly created based on user-input and potential safety hazards were successfully identified without human intervention.

BIM-BASED PLANNING OF TEMPORARY FACILITIES FOR CONCRETE CONSTRUCTION

  • Kyungki Kim;Jochen Teizer
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.1-6
    • /
    • 2013
  • Concrete construction requires utilization of many temporary facilities such as formwork, shoring, and scaffolding. Appropriate use of these temporary facilities greatly impacts the quality, cost, schedule, and safety of concrete construction. The current practice in design and planning of temporary facilities is often manual, error-prone, and re-active based on construction site layout, status, and progress in the field. Early design and planning of temporary facilities for concrete construction using Building Information Modeling (BIM) technology offers a potential solution. Although some commercially-available software exists that assists in the generation of temporary facility designs, the construction industry lacks tools that support detailed planning and design of many other temporary facilities. This research presents our early work in automating the design and planning of temporary facilities utilizing BIM. Algorithms were developed to automatically assess geometric conditions of work space to detect required temporary facilities and design them. The proposed methodology was implemented in a test model. By automatically incorporating temporary facilities into BIM, more realistic construction models can be created with less effort and errors. Temporary facilities-loaded models can finally be used for communication, bill of materials, scheduling, etc. and as a benchmark for field installation of temporary formwork, shoring, and scaffolding systems.

  • PDF

Development of a Bracing System Preventing Falling Down of Movable Scaffoldings in Temporary works (가설공사의 이동식 비계 전도방지 버팀대 개발)

  • Jang, Myung-Houn
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.31-33
    • /
    • 2012
  • Movable scaffolding has been used to work in high places. The scaffolding is economical and convenient to move to other places, but it has the risk of falling down. This paper proposes a fixed bracing system to prevent the falling down of a movable scaffolding, and evaluates its usability by making a small-sized model. Further studies of structural stability, safety, and economical efficiency is necessary to use the system practically.

  • PDF

A Study on the Buckling Characteristics of Steel Pipe Scaffold (강관비계의 좌굴특성에 관한 연구)

  • Paik, Shin-Won;Song, In-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.1
    • /
    • pp.57-61
    • /
    • 2010
  • Formwork is a temporary structure that supports its weight and that of fresh concrete as well as construction live loads. Scaffoling is a temporary frame used to support people and material in the construction or repair of buildings and other large structures. It is usually a modular system of metal pipes, although it can be made out of other materials. Bamboo is still used in some Asian countries like China. The purpose of a working scaffold is to provide a safe place of work with safe access suitable for the work being done. In construction site, steel pipes are usually used as scaffolds. In this study, scaffolding systems which is changed according to sleeper and joist space were measured by buckling test. Buckling load of respective scaffolding system was analyzed by structural analysis program(MIDAS). Buckling load of scaffold with/without wall connection and footboard was got by test and structural analysis. According to these results,we know that scaffolding system of case 3 is suitable. Buckling load of scaffold with wall connection is higher than without wall connection. So wall connection is important in scaffoling systems. Footboard in the scaffolding systems is not effective against promotion of buckling load. Finally, the present study results will be used to design scaffolding systems safely in the construction sites.

A Study on Standards for Components for Tied Post System Scaffolding and Shoring (조립형 비계 및 동바리 부재 기준에 관한 연구)

  • Moon, Seong-Oh;Lee, Sang-Yeol;Youn, Ye-Bin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.25-26
    • /
    • 2021
  • System scaffolding and shoring are temporary structures in which vertical members, horizontal members, bracing members and trusses are assembled and installed. In order to ensure quality and safety, the quality test shall be carried out in accordance with the Guidelines for Quality Management of Construction Works (MOLIT Notice No. 2020-750). The quality test method (national standard) for Components for tied post system scaffolding and shoring is based on the Korean standards (KS F 8021) and the Safety certification standards (MOEL Notice No. 2021-22). However, the two standards differ in some aspects such as performance standards and etc, so cause confusion when applying them on-site. In addition, the standard for truss are applied only to trusses for shoring and cannot be applied to trusses for scaffolding. Therefore, this study aims to unify the two national standards and establish realistic standards.

  • PDF

A Study on the Actual Condition of Scaffolding Construction in Accordance with the Revision of Safety Standards (비계공사 안전기준 개정에 따른 현장적용 실태에 관한 연구)

  • Kim, Ja Yeon;Cho, Youn Hee
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.4
    • /
    • pp.15-22
    • /
    • 2020
  • Scaffolding works are demolished after this structure is completed, and safety accidents often occur because they are installed differently from legal standards or frequently change during work. Therefore, in order to strengthen the safety of scaffolding, the Ministry of Land, Infrastructure and Transport required a need for design standards for temporary facilities that can systematically prevent and solve large-scale safety accidents that are repeatedly increasing during temporary construction. It has been enacted, and some contents have been revised for the past three years. However, construction site personnel do not know or know the revised matters, but often install scaffolding by the installer's experience rather than complying with relevant laws and regulations. It is the situation that the ground strength test of the foundation ground for the load applied to the floor of the column is omitted in most sites. Therefore, this study grasped the actual situation on the degree of recognition of the revised laws and regulations of the construction site and the foundation-based treatment of the floor working load of the scaffolding column, and derived problems. In addition, we intend to provide reference materials for the endurance test according to the ground conditions to small-scale small sites where it is difficult to conduct the test by carrying out the endurance test of the scaffolding ground according to the revised standards.

A Study on the Analysis of Current Situation and the Deduction of Improvement Measure Regarding the Scaffolding and the Related Components at Construction Site (건설 현장 가설기자재 운영현황 분석 및 개선 방안 도출 연구)

  • Jeong, Jin Woo;Kim, Yong Gon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.63-71
    • /
    • 2019
  • Work Guideline of Construction Quality Management was revised in July 2017, and it has changed the perception of scaffolding in South Korea. The on site investigation and survey was performed on manufacturers, leasing companies, and quality inspection agencies regarding the compliance with the guideline for the scaffolding and the related components brought to the site. Moreover, the related guidelines and identified unsatisfactory quality management items were analyzed by each subject. As a result, the major factors that cause the problems were reasonably deducted. The related regulations to prohibit the delivery of faulty scaffolding components to the construction site in order to secure the safety of the temporary structure was suggested.

A Methodology of the Static Analysis for Scaffolding Structure (가설공사 비계의 정적구조 해석에 관한 연구)

  • 손기상
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.2
    • /
    • pp.16-22
    • /
    • 1993
  • Accidents, especially fatal accidents in construction work are being not reduced, but increased, despite of more concerns of related authority and companies themselves. It is investigated that major reasons of which these accident increase are caused to set up wrong temporary structures : scaffolding with insufficient components or safety guards. Approximately 50% of falling accident, one of three major accidents; falling collapsing of structures or soil, accidents from heavy equipments, are due to defects of temporary structures. Therefore, technical standards for these temporary structures made by the ministry of labour in 1984, should be promptly revised because of its insufficient considerations for structural concepts. A method to effectively ensure the construction safety are shown through an experimental method, mathematical analysis structural planning against overturning and collapsing of scaffold-ing components, consideration of safety factor in loading, formulations of safety structure against falling or dropping from schaffolding.

  • PDF

Study on the Safety Assurance for the Temporary Structures (가설구조물 안전성 확보 방안 연구)

  • Lee, Jung Seok;Moon, Seong Oh;Youn, Ye Bin;Lim, Nam Gi;Oh, Tae Keun
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.73-80
    • /
    • 2018
  • According to the statistics publication of KOSHA, more than half of serious accidents at the construction sites were related to the temporary works and/or the temporary structures such as scaffoldings, shores, earth retaining walls, etc. The structural failures are occurred because of the overload acting on the structures or lack of performance of the one or more members of the structures. For the prevention of the collapse accidents relating to the temporary structures at the construction sites, we have to control construction processes not to occur the overload and also to control the performance and quality of each member of the temporary structures. MOLIT has amended the "Construction Technology Promotion Act" on Jan. 7th, 2015 to ensure the structural safety of the temporary structures. According to the Act, the designers of the construction design projects should check the structural integrity of the structures including the temporary structures and the construction companies have to let 'the Relative Professionals' confirm the structural integrity of temporary structures, the shores(${\geq}5m$ high) and the scaffolds(${\geq}31m$ high), before construction. Also, MOLIT has amended the "Regulation for Construction Technology Promotion Act" on Jul. 4th, 2016 for quality management and testing of temporary equipments. According th this regulation, the construction companies and supervisors should manage and test the temporary equipments before using them. In this paper, the standard drawings of the shores(< 5 m high) and the scaffolds(< 31 m high) and the amended "Business Guideline for Quality Management of Construction Work" are presented. As the result of this study, MOLIT noticed the amended "Business Guideline for Quality Management of Construction Work" on Jul. 1st, 2017.