• Title/Summary/Keyword: Temporal scale

Search Result 516, Processing Time 0.023 seconds

Plant Hardiness Zone Mapping Based on a Combined Risk Analysis Using Dormancy Depth Index and Low Temperature Extremes - A Case Study with "Campbell Early" Grapevine - (최저기온과 휴면심도 기반의 동해위험도를 활용한 'Campbell Early' 포도의 내동성 지도 제작)

  • Chung, U-Ran;Kim, Soo-Ock;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.4
    • /
    • pp.121-131
    • /
    • 2008
  • This study was conducted to delineate temporal and spatial patterns of potential risk of cold injury by combining the short-term cold hardiness of Campbell Early grapevine and the IPCC projected climate winter season minimum temperature at a landscape scale. Gridded data sets of daily maximum and minimum temperature with a 270m cell spacing ("High Definition Digital Temperature Map", HD-DTM) were prepared for the current climatological normal year (1971-2000) based on observations at the 56 Korea Meteorological Administration (KMA) stations using a geospatial interpolation scheme for correcting land surface effects (e.g., land use, topography, and elevation). The same procedure was applied to the official temperature projection dataset covering South Korea (under the auspices of the IPCC-SRES A2 and A1B scenarios) for 2071-2100. The dormancy depth model was run with the gridded datasets to estimate the geographical pattern of any changes in the short-term cold hardiness of Campbell Early across South Korea for the current and future normal years (1971-2000 and 2071-2100). We combined this result with the projected mean annual minimum temperature for each period to obtain the potential risk of cold injury. Results showed that both the land areas with the normal cold-hardiness (-150 and below for dormancy depth) and those with the sub-threshold temperature for freezing damage ($-15^{\circ}C$ and below) will decrease in 2071-2100, reducing the freezing risk. Although more land area will encounter less risk in the future, the land area with higher risk (>70%) will expand from 14% at the current normal year to 23 (A1B) ${\sim}5%$ (A2) in the future. Our method can be applied to other deciduous fruit trees for delineating geographical shift of cold-hardiness zone under the projected climate change in the future, thereby providing valuable information for adaptation strategy in fruit industry.

Development of an Adaptive Capacity Indicator to Climate Change in the Agricultural Water Sector (농업용수의 기후변화 적응능력 지표 개발 - 가뭄에 대한 적응을 중심으로 -)

  • Yoo, Ga-Young;Kim, Jin-Teak;Kim, Jung-Eun
    • Journal of Environmental Policy
    • /
    • v.7 no.4
    • /
    • pp.35-55
    • /
    • 2008
  • Assessing vulnerability to climate change is the first step to take when setting up appropriate adaptation strategies. Adaptive capacity to climate change is the important factor comprising vulnerability. An adaptive capacity index in agricultural water management system was developed considering agricultural water supply and demand for rice production in Jeolla-do, Korea. The agricultural water supply was assumed to be equal to the amount of water stored in the major agricultural reservoirs, while data on the agricultural water demand was obtained from the dynamic simulation results by Korea Agriculture Corporation(KAC). The spatial unit for analysis was conducted at the county(Si, Gun, Gu) level and temporal scale was based on every month from 1991-2003. Adaptive capacity for drought stress index(ACDS index) was calculated as the percentage of data points where the irrigated water supply was greater than the crop water demand. The ACDS index was compared with SWSCI(Standard Water Storage Capacity Index) and the relationship showed high degree of fit($R^2$=0.84) using the exponential function, indicating that the developed ACDS index is useful for evaluating the status of the balance between agricultural water supply and demand, especially for the small sized agricultural reservoirs. This study provided the methodological basis for developing climate change vulnerability index in agricultural water system which is projected to be more frequently exposed to drought condition in the future due to climate change. Further research should be extended to the study on the water demand of the crops other than rice and to the projection of the change in ACDS index in the future.

  • PDF

The Evaluation of Dynamic Continuous Mode in Brain SPECT (Brain SPECT 검사 시 Dynamic Continuous Mode의 유용성 평가)

  • Park, Sun Myung;Kim, Soo Yung;Choi, Sung Wook
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.1
    • /
    • pp.15-22
    • /
    • 2017
  • Purpose During Brain SPECT study, critical factor for proper study with $^{99m}Tc-ECD$ or $^{99m}Tc-HMPAO$ is one of the important causes to patent's movement. It causes both improper diagnosis and examination failure. In this study, we evaluated the effect of Dynamic Continuous Mode Acquisition compared to Step and Shoot Mode to raise efficacy and reject the data set with movement, as well as, be reconstructed in certain criteria. Materials and Methods Deluxe Jaszczak phantom and Hoffman 3D Brain phantom were used to find proper standard data set and exact time. Step and Shoot Mode and Dynamic Continuous Mode Acquisition were performed with SymbiaT16. Firstly, Deluxe Jaszczak phantom was filled with $Na^{99m}TcO_4$ 370 MBq and obtained in 60 minutes to check spatial resolution compared with Step and Shoot Mode and Dynamic Continuous Mode. The second, the Hoffman 3D Phantom filled with $Na^{99m}TcO_4$ 74 MBq was acquired for 15 Frame/minutes to evaluate visual assessment and quantification. Finally, in the Deluxe Jaszczak phantom, Spheres and Rods were measured by MI Apps program as well as, checking counts with the frontal lobe, temporal lobe, occipital lobe, cerebellum and hypothalamus parts was performed in the Hoffman 3D Brain Phantom. Results In Brain SPECT Study, using Dynamic Continuous Mode rather than current Step and Shoot Mode, we can do the reading using the 20 to 50 % of the acquired image, and during the test if the patient moves, we can remove unneeded image to reduce the rate of restudy and reinjection. Conclusion Dynamic Continuous Mode in Brain study condition enhances effects compared to Step and Shoot Mode. And also is powerful method to reduce reacquisition rate caused by patient movement. The findings further indicate that it suggest rejection limit to maintain clinical value with certain reconstruction factors compared with Tomo data set. Further examination to improve spatial resolution, SPECT/CT should be the answer for that.

  • PDF

Monitoring of a Time-series of Land Subsidence in Mexico City Using Space-based Synthetic Aperture Radar Observations (인공위성 영상레이더를 이용한 멕시코시티 시계열 지반침하 관측)

  • Ju, Jeongheon;Hong, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1657-1667
    • /
    • 2021
  • Anthropogenic activities and natural processes have been causes of land subsidence which is sudden sinking or gradual settlement of the earth's solid surface. Mexico City, the capital of Mexico, is one of the most severe land subsidence areas which are resulted from excessive groundwater extraction. Because groundwater is the primary water resource occupies almost 70% of total water usage in the city. Traditional terrestrial observations like the Global Navigation Satellite System (GNSS) or leveling survey have been preferred to measure land subsidence accurately. Although the GNSS observations have highly accurate information of the surfaces' displacement with a very high temporal resolution, it has often been limited due to its sparse spatial resolution and highly time-consuming and high cost. However, space-based synthetic aperture radar (SAR) interferometry has been widely used as a powerful tool to monitor surfaces' displacement with high spatial resolution and high accuracy from mm to cm-scale, regardless of day-or-night and weather conditions. In this paper, advanced interferometric approaches have been applied to get a time-series of land subsidence of Mexico City using four-year-long twenty ALOS PALSAR L-band observations acquired from Feb-11, 2007 to Feb-22, 2011. We utilized persistent scatterer interferometry (PSI) and small baseline subset (SBAS) techniques to suppress atmospheric artifacts and topography errors. The results show that the maximum subsidence rates of the PSI and SBAS method were -29.5 cm/year and -27.0 cm/year, respectively. In addition, we discuss the different subsidence rates where the study area is discriminated into three districts according to distinctive geotechnical characteristics. The significant subsidence rate occurred in the lacustrine sediments with higher compressibility than harder bedrock.

Weekly Variation of Phytoplankton Communities in the Inner Bay of Yeong-do, Busan (부산 영도 내만에서 식물플랑크톤 군집의 주간 변동 특성)

  • YANG, WONSEOK;CHOI, DONG HAN;WON, JONGSEOK;KIM, JIHOON;HYUN, MYUNG JIN;LEE, HAEUN;LEE, YEONJUNG;NOH, JAE HOON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.4
    • /
    • pp.356-368
    • /
    • 2021
  • To understand the temporal variation of phytoplankton communities in a coastal area, the biomass and diversity were weekly investigated in the inner bay of Yeong-do, Busan. In the study area, chlorophyll a concentration ranged from 0.43~7.58 mg m-3 during the study, indicating the study area was in mesotrophic or eutrophic status. The fractions of chlorophyll a occupied by large phytoplankton (> 3 ㎛ diameter) exhibited an average of 80% of total chlorophyll a in this study. Among the large phytoplankton, while Bacillariophyta was the most dominant in spring and summer, Cryptophyceae prevailed in the fall and winter. On the contrary, in the picophytoplankton community less than 3 ㎛ in diameter, Mamiellophyceae was the most dominant in most seasons, Cryptophyceae was relatively high with an average of 17.7 ± 17.6% throughout the year, but seasonal variations were large. Dinophyceae rarely occupied a higher fraction up to 60.4% of the picophytoplankton community. By weekly monitoring at a coastal station for 13 months, it is suggested that phytoplankton communities in coastal waters could be changed on a short time scale. If data are steadily accumulated at the time-series monitoring site for a long time, these will provide important data for understanding the long-term dynamics of phytoplankton as well as the impact of climate and environmental changes.

Stratigraphic response to tectonic evolution of sedimentary basins in the Yellow Sea and adjacent areas (황해 및 인접 지역 퇴적분지들의 구조적 진화에 따른 층서)

  • Ryo In Chang;Kim Boo Yang;Kwak won Jun;Kim Gi Hyoun;Park Se Jin
    • The Korean Journal of Petroleum Geology
    • /
    • v.8 no.1_2 s.9
    • /
    • pp.1-43
    • /
    • 2000
  • A comparison study for understanding a stratigraphic response to tectonic evolution of sedimentary basins in the Yellow Sea and adjacent areas was carried out by using an integrated stratigraphic technology. As an interim result, we propose a stratigraphic framework that allows temporal and spatial correlation of the sedimentary successions in the basins. This stratigraphic framework will use as a new stratigraphic paradigm for hydrocarbon exploration in the Yellow Sea and adjacent areas. Integrated stratigraphic analysis in conjunction with sequence-keyed biostratigraphy allows us to define nine stratigraphic units in the basins: Cambro-Ordovician, Carboniferous-Triassic, early to middle Jurassic, late Jurassic-early Cretaceous, late Cretaceous, Paleocene-Eocene, Oligocene, early Miocene, and middle Miocene-Pliocene. They are tectono-stratigraphic units that provide time-sliced information on basin-forming tectonics, sedimentation, and basin-modifying tectonics of sedimentary basins in the Yellow Sea and adjacent area. In the Paleozoic, the South Yellow Sea basin was initiated as a marginal sag basin in the northern margin of the South China Block. Siliciclastic and carbonate sediments were deposited in the basin, showing cyclic fashions due to relative sea-level fluctuations. During the Devonian, however, the basin was once uplifted and deformed due to the Caledonian Orogeny, which resulted in an unconformity between the Cambro-Ordovician and the Carboniferous-Triassic units. The second orogenic event, Indosinian Orogeny, occurred in the late Permian-late Triassic, when the North China block began to collide with the South China block. Collision of the North and South China blocks produced the Qinling-Dabie-Sulu-Imjin foldbelts and led to the uplift and deformation of the Paleozoic strata. Subsequent rapid subsidence of the foreland parallel to the foldbelts formed the Bohai and the West Korean Bay basins where infilled with the early to middle Jurassic molasse sediments. Also Piggyback basins locally developed along the thrust. The later intensive Yanshanian (first) Orogeny modified these foreland and Piggyback basins in the late Jurassic. The South Yellow Sea basin, however, was likely to be a continental interior sag basin during the early to middle Jurassic. The early to middle Jurassic unit in the South Yellow Sea basin is characterized by fluvial to lacustrine sandstone and shale with a thick basal quartz conglomerate that contains well-sorted and well-rounded gravels. Meanwhile, the Tan-Lu fault system underwent a sinistrai strike-slip wrench movement in the late Triassic and continued into the Jurassic and Cretaceous until the early Tertiary. In the late Jurassic, development of second- or third-order wrench faults along the Tan-Lu fault system probably initiated a series of small-scale strike-slip extensional basins. Continued sinistral movement of the Tan-Lu fault until the late Eocene caused a megashear in the South Yellow Sea basin, forming a large-scale pull-apart basin. However, the Bohai basin was uplifted and severely modified during this period. h pronounced Yanshanian Orogeny (second and third) was marked by the unconformity between the early Cretaceous and late Eocene in the Bohai basin. In the late Eocene, the Indian Plate began to collide with the Eurasian Plate, forming a megasuture zone. This orogenic event, namely the Himalayan Orogeny, was probably responsible for the change of motion of the Tan-Lu fault system from left-lateral to right-lateral. The right-lateral strike-slip movement of the Tan-Lu fault caused the tectonic inversion of the South Yellow Sea basin and the pull-apart opening of the Bohai basin. Thus, the Oligocene was the main period of sedimentation in the Bohai basin as well as severe tectonic modification of the South Yellow Sea basin. After the Oligocene, the Yellow Sea and Bohai basins have maintained thermal subsidence up to the present with short periods of marine transgressions extending into the land part of the present basins.

  • PDF