• 제목/요약/키워드: Temporal data

검색결과 2,895건 처리시간 0.041초

Accelerated Resting-State Functional Magnetic Resonance Imaging Using Multiband Echo-Planar Imaging with Controlled Aliasing

  • Seo, Hyung Suk;Jang, Kyung Eun;Wang, Dingxin;Kim, In Seong;Chang, Yongmin
    • Investigative Magnetic Resonance Imaging
    • /
    • 제21권4호
    • /
    • pp.223-232
    • /
    • 2017
  • Purpose: To report the use of multiband accelerated echo-planar imaging (EPI) for resting-state functional MRI (rs-fMRI) to achieve rapid high temporal resolution at 3T compared to conventional EPI. Materials and Methods: rs-fMRI data were acquired from 20 healthy right-handed volunteers by using three methods: conventional single-band gradient-echo EPI acquisition (Data 1), multiband gradient-echo EPI acquisition with 240 volumes (Data 2) and 480 volumes (Data 3). Temporal signal-to-noise ratio (tSNR) maps were obtained by dividing the mean of the time course of each voxel by its temporal standard deviation. The resting-state sensorimotor network (SMN) and default mode network (DMN) were estimated using independent component analysis (ICA) and a seed-based method. One-way analysis of variance (ANOVA) was performed between the tSNR map, SMN, and DMN from the three data sets for between-group analysis. P < 0.05 with a family-wise error (FWE) correction for multiple comparisons was considered statistically significant. Results: One-way ANOVA and post-hoc two-sample t-tests showed that the tSNR was higher in Data 1 than Data 2 and 3 in white matter structures such as the striatum and medial and superior longitudinal fasciculus. One-way ANOVA revealed no differences in SMN or DMN across the three data sets. Conclusion: Within the adapted metrics estimated under specific imaging conditions employed in this study, multiband accelerated EPI, which substantially reduced scan times, provides the same quality image of functional connectivity as rs-fMRI by using conventional EPI at 3T. Under employed imaging conditions, this technique shows strong potential for clinical acceptance and translation of rs-fMRI protocols with potential advantages in spatial and/or temporal resolution. However, further study is warranted to evaluate whether the current findings can be generalized in diverse settings.

Temporal 데이터의 최적의 클러스터 수 결정에 관한 연구 (A Study for Determining the Best Number of Clusters on Temporal Data)

  • 조영희;이계성;전진호
    • 한국콘텐츠학회논문지
    • /
    • 제6권1호
    • /
    • pp.23-30
    • /
    • 2006
  • Temporal 데이터의 클러스터링 방법론 중의 하나로 모델기반 방법론이 있다. 이는 각 클러스터에 대하여 오토마타기반의 모델을 가정하는 것이다. 개별 모델을 추출하기 위해서는 먼저 전체 데이터에 대한 적합한 모델을 찾는 것이 필요하다. 전체에 대한 모델은 데이터집합에 대한 최적의 클러스터의 수를 결정함으로 개별 모델 구축의 준비를 완료한다. 본 연구에서는 클러스터 수를 결정하기 위한 기준인 베이지안 정보기준(BIC : Bayesian Information Criterion) 근사법의 활용도를 검증하고 데이터 크기와 BIC 값의 상관관계를 파악함으로 탐색 효율을 높이는 방안을 제안한다. 실험에서는 인위적 모델을 통하여 생성된 인공적인 여러 형태의 데이터집합을 활용하여 BIC근사 측도의 활용성에 대해 살펴보았다. 실험결과에서 보여주는 것처럼 BIC 근사 측도는 데이터의 크기가 비교적 클 경우에 올바른 파티션의 사이즈를 추정함을 확인하였다.

  • PDF

시간 단위 그룹핑을 이용한 빈발 아이템셋 마이닝 (Mining Frequent Itemsets using Time Unit Grouping)

  • 황정희
    • 문화기술의 융합
    • /
    • 제8권6호
    • /
    • pp.647-653
    • /
    • 2022
  • 데이터 마이닝은 데이터를 탐색하고 분석하여 데이터 사이의 관계나 패턴 등의 지식을 탐사하는 기법이다. 실세계에서 발생하는 데이터는 시간 속성을 포함한다. 시간 속성을 포함하는 데이터에서 유용한 지식을 찾아내기 위한 시간 데이터마이닝 연구는 미래를 예측할 수 있는 예측 판단에 효율적으로 활용될 수 있다. 본 논문은 데이터베이스를 일정한 시간 간격 단위로 구분하고, 시간 단위에서 빈발한 패턴 아이템셋을 발견하기 위한 시간 단위 그룹핑을 이용하는 알고리즘을 제안한다. 제안하는 알고리즘은 시간 단위에 포함된 트랜잭션과 아이템 정보를 매트릭스로 구성하고, 그룹핑을 통한 시간 단위에서의 빈발한 아이템셋을 발견한다. 성능평가의 실험 결과에서 수행시간은 기존의 알고리즘보다 1.2배 소요되지만, 2배 이상의 빈발 아이템셋이 탐사되었다.

비선형 증발접시 증발량 산정을 위한 시간적 분해모형 (The Temporal Disaggregation Model for Nonlinear Pan Evaporation Estimation)

  • 김성원;김정헌;박기범;김형수
    • 대한토목학회논문집
    • /
    • 제30권4B호
    • /
    • pp.399-412
    • /
    • 2010
  • 본 연구의 목적은 연 증발접시 증발량의 시간적인 분해를 위하여 신경망모형을 적용하는데 있다. 신경망모형은 각각 다층 퍼셉트론 신경망모형(MLP-NNM)과 일반화된 회귀신경망모형(GRNNM)으로 구성되어 있다. 그리고 신경망모형의 수행평가를 위하여 훈련 및 테스트과정으로 구성되었다. 신경망모형의 훈련과정을 위하여 실측, 모의 및 혼합자료와 같은 세 가지 형태의 자료가 사용되었으며, 테스트과정을 위해서는 실측자료만 이용되었다. 본 연구를 통하여 비선형 시계열자료의 시간적 분해를 위해서 MLP-NNM과 GRNNM의 적용성을 평가하였다. 게다가 연 증발접시 증발량 자료의 시간적 분해로부터 신뢰성있는 월 증발접시 증발량자료를 구축할 수 있을 것이며, 관개배수 네트워크 시스템의 평가를 위한 이용가능한 자료를 제공할 수 있을 것이다.

Spatio-temporal models for generating a map of high resolution NO2 level

  • Yoon, Sanghoo;Kim, Mingyu
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권3호
    • /
    • pp.803-814
    • /
    • 2016
  • Recent times have seen an exponential increase in the amount of spatial data, which is in many cases associated with temporal data. Recent advances in computer technology and computation of hierarchical Bayesian models have enabled to analyze complex spatio-temporal data. Our work aims at modeling data of daily average nitrogen dioxide (NO2) levels obtained from 25 air monitoring sites in Seoul between 2003 and 2010. We considered an independent Gaussian process model and an auto-regressive model and carried out estimation within a hierarchical Bayesian framework with Markov chain Monte Carlo techniques. A Gaussian predictive process approximation has shown the better prediction performance rather than a Hierarchical auto-regressive model for the illustrative NO2 concentration levels at any unmonitored location.

시간적 데이터와 공간적 데이터의 문맥적 융합 접근방법에 관한 연구 (A Context Fusion Approach for Temporal Data and Spatial Data)

  • 권남기;김정기;이주환;김정현;김원일
    • 한국엔터테인먼트산업학회논문지
    • /
    • 제4권2호
    • /
    • pp.58-63
    • /
    • 2010
  • 유비쿼터스 컴퓨팅 환경에서 다양한 상황인식 어플리케이션들은 각기 다른 정보를 사용자에게 제공한다. 본고에서는 센싱 장치로부터 나오는 시간적, 장소적인 데이터가 서로 융합되어, 사용자에게 최적의 출력을 제공하는 시스템을 소개한다.

지수 평활법을 적용한 시간 연관 규칙 (Temporal Association Rules with Exponential Smoothing Method)

  • 변루나;박병선;한정혜;정한일;임춘성
    • 정보처리학회논문지D
    • /
    • 제11D권3호
    • /
    • pp.741-746
    • /
    • 2004
  • 전자상거래가 활성화됨에 따라 고객 개인의 관심에 부합하는 개인화된 정보나 상품 서비스를 제공하기 위하여 시간에 따라 분할하여 연산하는 시간 연관 규칙이 최근에 등장하고 있다. 본 논문은 일반적으로 정의된 연관 규칙에 대해 시간의 변화를 고려하기 위하여 최신 데이터에 가중치를 높여 주는 지수 평활법을 적용한 연관 규칙을 정의하고 이로 탐사하는 알고리즘을 제안한다. 시뮬레이션과 적용사례를 통하여 시간에 따라 분할하여 지수 평활법을 적용한 시간 연관 규칙이 기존의 것보다 실행시간은 다소 많지만 시간을 고려한 정확한 탐색률을 갖으므로 전자 상점 현장 응용에 효과적임을 확인하였다.

농업기상 결측치 보정을 위한 통계적 시공간모형 (A Missing Value Replacement Method for Agricultural Meteorological Data Using Bayesian Spatio-Temporal Model)

  • 박다인;윤상후
    • 한국환경과학회지
    • /
    • 제27권7호
    • /
    • pp.499-507
    • /
    • 2018
  • Agricultural meteorological information is an important resource that affects farmers' income, food security, and agricultural conditions. Thus, such data are used in various fields that are responsible for planning, enforcing, and evaluating agricultural policies. The meteorological information obtained from automatic weather observation systems operated by rural development agencies contains missing values owing to temporary mechanical or communication deficiencies. It is known that missing values lead to reduction in the reliability and validity of the model. In this study, the hierarchical Bayesian spatio-temporal model suggests replacements for missing values because the meteorological information includes spatio-temporal correlation. The prior distribution is very important in the Bayesian approach. However, we found a problem where the spatial decay parameter was not converged through the trace plot. A suitable spatial decay parameter, estimated on the bias of root-mean-square error (RMSE), which was determined to be the difference between the predicted and observed values. The latitude, longitude, and altitude were considered as covariates. The estimated spatial decay parameters were 0.041 and 0.039, for the spatio-temporal model with latitude and longitude and for latitude, longitude, and altitude, respectively. The posterior distributions were stable after the spatial decay parameter was fixed. root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and bias were calculated for model validation. Finally, the missing values were generated using the independent Gaussian process model.

모바일 환경에서 갱신된 시공간 데이터의 변경전파 기법의 설계 및 구현 (Design and Implementation of Update Propagation Technique for Update Spatio-Temporal Data in Mobile Environments)

  • 김홍기;김동현;조대수
    • 한국정보통신학회논문지
    • /
    • 제15권2호
    • /
    • pp.395-403
    • /
    • 2011
  • 모바일 GIS 환경에서 최신의 시공간 정보를 제공하기 위해 여러 가지 연구들이 수행되었다. 양방향 동기화 기법은 변경된 시공간 정보를 모바일 단말기를 이용하여 현장에서 수집하고 서버와 동기화를 통해 신속하게 최신의 시공간 데이터를 수집할 수 있다. 그러나 다른 모바일 단말기들이 수집된 시공간 데이터를 제공받기 위해서는 서버와 주기적으로 동기화를 수행해야 한다. 모바일 단말기들이 주기적으로 서버에 접속하여 동기화를 수행하지 않으면 수집된 최신의 시공간 데이터를 활용할 수 없다. 이 논문에서는 모바일 단말기로부터 수집된 시공간 데이터에 대한 변경전파 기법을 제안한다. 변경전파 기법은 변경전파에 영향이 있는 다양한 요소들을 고려해야 하므로, 각 요소에 따른 다양한 변경전파 정책들을 제공한다.

Improvement of Temporal Resolution for Land Surface Monitoring by the Geostationary Ocean Color Imager Data

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • 대한원격탐사학회지
    • /
    • 제32권1호
    • /
    • pp.25-38
    • /
    • 2016
  • With the increasing need for high temporal resolution satellite imagery for monitoring land surfaces, this study evaluated the temporal resolution of the NDVI composites from Geostationary Ocean Color Imager (GOCI) data. The GOCI is the first geostationary satellite sensor designed to provide continuous images over a $2,500{\times}2,500km^2$ area of the northeast Asian region with relatively high spatial resolution of 500 m. We used total 2,944 hourly images of the GOCI level 1B radiance data obtained during the one-year period from April 2011 to March 2012. A daily NDVI composite was produced by maximum value compositing of eight hourly images captured during day-time. Further NDVI composites were created with different compositing periods ranging from two to five days. The cloud coverage of each composite was estimated by the cloud detection method developed in study and then compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua cloud product and 16-day NDVI composite. The GOCI NDVI composites showed much higher temporal resolution with less cloud coverage than the MODIS NDVI products. The average of cloud coverage for the five-day GOCI composites during the one year was only 2.5%, which is a significant improvement compared to the 8.9%~19.3% cloud coverage in the MODIS 16-day NDVI composites.