DOI QR코드

DOI QR Code

Improvement of Temporal Resolution for Land Surface Monitoring by the Geostationary Ocean Color Imager Data

  • Lee, Hwa-Seon (Department of Geoinformatic Engineering, Inha University) ;
  • Lee, Kyu-Sung (Department of Geoinformatic Engineering, Inha University)
  • Received : 2016.01.19
  • Accepted : 2016.02.23
  • Published : 2016.02.28

Abstract

With the increasing need for high temporal resolution satellite imagery for monitoring land surfaces, this study evaluated the temporal resolution of the NDVI composites from Geostationary Ocean Color Imager (GOCI) data. The GOCI is the first geostationary satellite sensor designed to provide continuous images over a $2,500{\times}2,500km^2$ area of the northeast Asian region with relatively high spatial resolution of 500 m. We used total 2,944 hourly images of the GOCI level 1B radiance data obtained during the one-year period from April 2011 to March 2012. A daily NDVI composite was produced by maximum value compositing of eight hourly images captured during day-time. Further NDVI composites were created with different compositing periods ranging from two to five days. The cloud coverage of each composite was estimated by the cloud detection method developed in study and then compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua cloud product and 16-day NDVI composite. The GOCI NDVI composites showed much higher temporal resolution with less cloud coverage than the MODIS NDVI products. The average of cloud coverage for the five-day GOCI composites during the one year was only 2.5%, which is a significant improvement compared to the 8.9%~19.3% cloud coverage in the MODIS 16-day NDVI composites.

Keywords

References

  1. Ackerman, S.A., K.I. Strabala, W.P. Menzel, R.A. Frey, C.C. Moeller, and L.E. Gumley, 1998. Discriminating clear sky from clouds with MODIS, Journal of Geophysical Research: Atmospheres (1984-2012), 103(D24): 32141-32157. https://doi.org/10.1029/1998JD200032
  2. Ahl, D.E., S.T. Gower, S.N. Burrows, N.V. Shabanov, R.B. Myneni, and Y. Knyazikhin, 2006. Monitoring spring canopy phenology of a deciduous broadleaf forest using MODIS, Remote Sensing of Environment, 104(1): 88-95. https://doi.org/10.1016/j.rse.2006.05.003
  3. Ahn, J., Y. Park, J. Ryu, and B. Lee, 2012. Development of atmospheric correction algorithm for Geostationary Ocean Color Imager (GOCI), Ocean Science Journal, 47(3): 247-259. https://doi.org/10.1007/s12601-012-0026-2
  4. Ali, A., C. de Bie, and A.K. Skidmore, 2013. Detecting long-duration cloud contamination in hypertemporal NDVI imagery, International Journal of Applied Earth Observation and Geoinformation, 24: 22-31. https://doi.org/10.1016/j.jag.2013.02.001
  5. Amraoui, M., C. DaCamara, and J. Pereira, 2010. Detection and monitoring of African vegetation fires using MSG-SEVIRI imagery, Remote Sensing of Environment, 114(5): 1038-1052. https://doi.org/10.1016/j.rse.2009.12.019
  6. Chen, P., R. Srinivasan, G. Fedosejevs, and J. Kiniry, 2003. Evaluating different NDVI composite techniques using NOAA-14 AVHRR data, International Journal of Remote Sensing, 24(17): 3403-3412. https://doi.org/10.1080/0143116021000021279
  7. Chuvieco, E., G. Ventura, M.P. Martin, and I. Gomez, 2005. Assessment of multitemporal compositing techniques of MODIS and AVHRR images for burned land mapping, Remote Sensing of Environment, 94(4): 450-462. https://doi.org/10.1016/j.rse.2004.11.006
  8. Cracknell, A.P., 2001. The exciting and totally unanticipated success of the AVHRR in applications for which it was never intended, Advances in Space Research, 28(1): 233-240. https://doi.org/10.1016/S0273-1177(01)00349-0
  9. El Saleous, N., E. Vermote, C. Justice, J. Townshend, C. Tucker, and S. Goward, 2000. Improvements in the global biospheric record from the Advanced Very High Resolution Radiometer (AVHRR), International Journal of Remote Sensing, 21(6-7): 1251-1277. https://doi.org/10.1080/014311600210164
  10. Fensholt, R., A. Anyamba, S. Huber, S.R. Proud, C.J. Tucker, J. Small, E. Pak, M.O. Rasmussen, I. Sandholt, and C. Shisanya, 2011. Analysing the advantages of high temporal resolution geostationary MSG SEVIRI data compared to Polar Operational Environmental Satellite data for land surface monitoring in Africa, International Journal of Applied Earth Observation and Geoinformation, 13(5): 721-729. https://doi.org/10.1016/j.jag.2011.05.009
  11. Fensholt, R., A. Anyamba, S. Stisen, I. Sandholt, E. Pak, and J. Small, 2007. Comparisons of compositing period length for vegetation index data from polar-orbiting and geostationary satellites for the cloud-prone region of West Africa, Photogrammetric Engineering & Remote Sensing, 73(3): 297-309. https://doi.org/10.14358/PERS.73.3.297
  12. Frey, R.A., S.A. Ackerman, Y. Liu, K.I. Strabala, H. Zhang, J.R. Key, and X. Wang, 2008. Cloud detection with MODIS. Part I: Improvements in the MODIS cloud mask for collection 5, Journal of Atmospheric and Oceanic Technology, 25(7): 1057-1072. https://doi.org/10.1175/2008JTECHA1052.1
  13. Gutman, G., and A. Ignatov, 1995. Global land monitoring from AVHRR: potential and limitations, International Journal of Remote Sensing, 16(13): 2301-2309. https://doi.org/10.1080/01431169508954559
  14. Hagolle, O., M. Huc, D.V. Pascual, and G. Dedieu, 2010. A multi-temporal method for cloud detection, applied to FORMOSAT-2, VEN${\mu}$S, LANDSAT and SENTINEL-2 images, Remote Sensing of Environment, 114(8): 1747-1755. https://doi.org/10.1016/j.rse.2010.03.002
  15. Holben, B.N., 1986. Characteristics of maximum-value composite images from temporal AVHRR data, International Journal of Remote Sensing, 7(11): 1417-1434. https://doi.org/10.1080/01431168608948945
  16. Huete, A., K. Didan, T. Miura, E.P. Rodriguez, X. Gao, and L.G. Ferreira, 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sensing of Environment, 83(1): 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2
  17. Huete, A., C. Justice, and W. Van Leeuwen, 1999. MODIS vegetation index (MOD13), Algorithm theoretical basis document, 3: 213.
  18. Jin, S., and S.A. Sader, 2005. MODIS time-series imagery for forest disturbance detection and quantification of patch size effects, Remote Sensing of Environment, 99(4): 462-470. https://doi.org/10.1016/j.rse.2005.09.017
  19. Julien, Y., and J.A. Sobrino, 2010. Comparison of cloud-reconstruction methods for time series of composite NDVI data, Remote Sensing of Environment, 114(3): 618-625. https://doi.org/10.1016/j.rse.2009.11.001
  20. Justice, C.O., J. Townshend, B. Holben, and e.C. Tucker, 1985. Analysis of the phenology of global vegetation using meteorological satellite data, International Journal of Remote Sensing, 6(8): 1271-1318. https://doi.org/10.1080/01431168508948281
  21. Kang, G., P. Coste, H. Youn, F. Faure, and S. Choi, 2010. An in-orbit radiometric calibration method of the geostationary ocean color imager, Geoscience and Remote Sensing, IEEE Transactions on, 48(12): 4322-4328. https://doi.org/10.1109/TGRS.2010.2050329
  22. Lamquin, N., C. Mazeran, D. Doxaran, J. Ryu, and Y. Park, 2012. Assessment of GOCI radiometric products using MERIS, MODIS and field measurements, Ocean Science Journal, 47(3): 287-311. https://doi.org/10.1007/s12601-012-0029-z
  23. Lee, K., S. Park, S. Kim, H. Lee, and J. Shin, 2012. Radiometric characteristics of Geostationary Ocean Color Imager (GOCI) for land applications, Korean Journal of Remote Sensing, 28(3): 277-285. https://doi.org/10.7780/kjrs.2012.28.3.277
  24. Lee, H. and K. Lee, 2015. Development of cloud detection method with Geostationary Ocean Color Imagery for land applications, Korean Journal of Remote Sensing, 31(5): 371-384 (In Korean with English abstact). https://doi.org/10.7780/kjrs.2015.31.5.2
  25. Lee, W., J. Kudoh, and S. Makino, 2001. Cloud detection for the Far East region using NOAA AVHRR images, International Journal of Remote Sensing, 22(7): 1349-1360. https://doi.org/10.1080/01431160151144387
  26. Maisongrande, P., B. Duchemin, and G. Dedieu, 2004. VEGETATION/SPOT: an operational mission for the Earth monitoring; presentation of new standard products, International Journal of Remote Sensing, 25(1): 9-14. https://doi.org/10.1080/0143116031000115265
  27. Muraoka, H., and H. Koizumi, 2009. Satellite Ecology (SATECO) linking ecology, remote sensing and micrometeorology, from plot to regional scale, for the study of ecosystem structure and function, Journal of Plant Research, 122(1): 3-20.
  28. Nigam, R., B.K. Bhattacharya, K.R. Gunjal, N. Padmanabhan, and N. Patel, 2012. Formulation of time series vegetation index from Indian geostationary satellite and comparison with global product, Journal of the Indian Society of Remote Sensing, 40(1): 1-9. https://doi.org/10.1007/s12524-011-0122-2
  29. Platnick, S., M.D. King, S. Ackerman, W.P. Menzel, B. Baum, J.C. Riedi, and R. Frey, 2003. The MODIS cloud products: Algorithms and examples from Terra, Geoscience and Remote Sensing, IEEE Transactions on, 41(2): 459-473. https://doi.org/10.1109/TGRS.2002.808301
  30. Proud, S.R., R. Fensholt, L.V. Rasmussen, and I. Sandholt, 2011. Rapid response flood detection using the MSG geostationary satellite, International Journal of Applied Earth Observation and Geoinformation, 13(4): 536-544. https://doi.org/10.1016/j.jag.2011.02.002
  31. Pu, R., Z. Li, P. Gong, I. Csiszar, R. Fraser, W. Hao, S. Kondragunta, and F. Weng, 2007. Development and analysis of a 12-year daily 1-km forest fire dataset across North America from NOAA/AVHRR data, Remote Sensing of Environment, 108(2): 198-208. https://doi.org/10.1016/j.rse.2006.02.027
  32. Remmel, T.K., and A.H. Perera, 2001. Fire mapping in a northern boreal forest: assessing AVHRR/NDVI methods of change detection, Forest Ecology and Management, 152(1): 119-129. https://doi.org/10.1016/S0378-1127(00)00594-6
  33. Roy, D.P., J.S. Borak, S. Devadiga, R.E. Wolfe, M.Zheng, and J. Descloitres, 2002. The MODIS land product quality assessment approach, Remote Sensing of Environment, 83(1): 62-76. https://doi.org/10.1016/S0034-4257(02)00087-1
  34. Rulinda, C.M., W. Bijker, and A. Stein, 2011. The chlorophyll variability in Meteosat derived NDVI in a context of drought monitoring, Procedia Environmental Sciences, 3: 32-37. https://doi.org/10.1016/j.proenv.2011.02.007
  35. Ryu, J., H. Han, S. Cho, Y. Park, and Y. Ahn, 2012. Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS), Ocean Science Journal, 47(3): 223-233. https://doi.org/10.1007/s12601-012-0024-4
  36. Saunders, R.W., and K.T. Kriebel, 1988. An improved method for detecting clear sky and cloudy radiances from AVHRR data, International Journal of Remote Sensing, 9(1): 123-150. https://doi.org/10.1080/01431168808954841
  37. Stockli, R., and P.L. Vidale, 2004. European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter dataset, International Journal of Remote Sensing, 25(17): 3303-3330. https://doi.org/10.1080/01431160310001618149
  38. Thayn, J., and K. Price, 2008. Julian dates and introduced temporal error in remote sensing vegetation phenology studies, International Journal of Remote Sensing, 29(20): 6045-6049. https://doi.org/10.1080/01431160802235829
  39. Townshend, J.R., 1994. Global data sets for land applications from the Advanced Very High Resolution Radiometer: an introduction, International Journal of Remote Sensing, 15(17): 3319-3332. https://doi.org/10.1080/01431169408954333
  40. Wang, L., P. Xiao, X. Feng, H. Li, W. Zhang, and J. Lin, 2014. Effective Compositing Method to Produce Cloud-Free AVHRR Image, IEEE Geoscience and Remote Sensing Letters, 11(1): 328-332. https://doi.org/10.1109/LGRS.2013.2257672
  41. Yeom, J., and H. Kim, 2013. Feasibility of using Geostationary Ocean Colour Imager (GOCI) data for land applications after atmospheric correction and bidirectional reflectance distribution function modelling, International Journal of Remote Sensing, 34(20): 7329-7339. https://doi.org/10.1080/2150704X.2013.817708