• Title/Summary/Keyword: Temporal Order

Search Result 1,111, Processing Time 0.03 seconds

Estimation of Time-dependent Damage Paths of Armors of Rubble-mound Breakwaters using Stochastic Processes (추계학적 확률과정을 이용한 경사제 피복재의 시간에 따른 피해 경로 추정)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.4
    • /
    • pp.246-257
    • /
    • 2015
  • The progressive degradation paths of structures have quantitatively been tracked by using stochastic processes, such as Wiener process, gamma process and compound Poisson process, in order to consider both the sampling uncertainty due to the usual lack of damage data and the temporal uncertainty associated with the deterioration evolution. Several important features of stochastic processes which should carefully be considered in application of the stochastic processes to practical problems have been figured out through assessing cumulative damage and lifetime distribution as a function of time. Especially, the Wiener process and the gamma process have straightforwardly been applied to armors of rubble-mound breakwaters by the aid of a sample path method based on Melby's formula which can estimate cumulative damage levels of armors over time. The sample path method have been developed to calibrate the related-parameters required in the stochastic modelling of armors of rubble-mound breakwaters. From the analyses, it is found that cumulative damage levels of armors have surely been saturated with time. Also, the exponent of power law in time, that plays a significant role in predicting the cumulative damage levels over time, can easily be determined, which makes the stochastic models possible to track the cumulative damage levels of armors of rubble-mound breakwaters over time. Finally, failure probabilities with respect to various critical limits have been analyzed throughout its anticipated service life.

Seasonal Variation of PM2.5 Components Observed in an Industrial Area of Chiba Prefecture, Japan

  • Ichikawa, Yujiro;Naito, Suekazu;Ishii, Katsumi;Oohashi, Hideaki
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.66-77
    • /
    • 2015
  • In order to survey the seasonal variation of the chemical composition of particulate matter of $2.5{\mu}m$ or less ($PM_{2.5}$), $PM_{2.5}$ was sampled from 8 February 2013 to 31 March 2014 in an industrial area of Chiba Prefecture, Japan. Chemical measurements of the sample included: ionic components ($Na^+$, $NH_4{^+}$, $Ca^{2+}$, $Mg^{2+}$, $K^+$, $Cl^-$, $NO_3{^-}$ and $SO_4{^{2-}}$), carbonaceous components - organic carbon (OC) and elemental carbon (EC), and water-soluble organic carbon (WSOC). Also, secondary organic carbon (SOC) was measured based using the EC tracer method, and char-EC and soot-EC were calculated from the analytical results. The data obtained were interpreted in terms of temporal variation. Of the overall mean value of $PM_{2.5}$ mass concentration obtained during the study period, ionic components, OC and EC accounted for 45.3%, 19.7%, and 8.0%, respectively. $NO_3{^-}$ showed a unique seasonal distribution pattern due to a dependence on temperature and absolute humidity. It was estimated that an approximate temperature of $14^{\circ}C$, and absolute humidity of $7g/m^3$ were critical for the reversible reaction of $NH_4NO_3(p){\leftrightharpoons}NH_3(g)+HNO_3(g)$. The amount of OC and EC contributing to the monthly $PM_{2.5}$ mass concentration was higher in autumn and winter compared to spring and summer. This result could be attributed to the impact of burning biomass, since WSOC and the ratio of char-EC/soot-EC showed a similar pattern during the corresponding period. From the comparison of monthly WSOC/OC values, a maximum ratio of 83% was obtained in August (summer). The WSOC and estimated SOC levels derived from the EC tracer method correlated (R=0.77) in summer. The high occurrence of WSOC during summer was mainly due to the formation of SOC by photochemical reactions. Through long-term observation of $PM_{2.5}$ chemical components, we established that the degree to which the above-mentioned factors influence $PM_{2.5}$ composition, fluctuates with seasonal changes.

Characteristics of Zooplankton Community in the Udolmok Waterway, Korea (울돌목 수로 동물플랑크톤의 군집 특성)

  • Yoo, Jeong-Kyu;Jung, Jung-Ho;Nam, Eun-Jung;Myung, Chul-Soo
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.2 s.62
    • /
    • pp.201-211
    • /
    • 2006
  • 55 zooplankton taxa including 35 copepoda were observed in the Uldolmok waterway during the sampling period from August 2003 to April 2004. Neritic species showed the seasonal species fluctuation, and oceanic warm-water species occurred throughout the year. The number of taxa tended to increase at the flood tide from low tide to high tide, and to decrease at the ebb tide from high tide to low tide. Therefore, species composition of zooplankton in the Uldolmok waterway seemed to be affected by the inflow of oceanic waters with oceanic species all the year round. Total abundance of zooplankton ranged from 104 (February 2004) to 2,717 indiv. $m^{-3}$ (August 2003). According to the tidal cycle, the change of total abundance was more irregular and variable in November 2003 and February 2004 than August 2003 and April 2004. In August 2003 and April 2004, total abundance was low at the strong tide, and was high at low and high tide when tidal current was weak. Average abundances of dominant species such as Paracalanus indicus, Cirripedia nauplii and Acartia hongi were on the order of twice higher at ebb tide than flood tide. However, their abundances were also subject to wide fluctuation within flood tide and ebb tide. The changes of environmental parameters such as water temperature, salinity and chlorophyll-a concentration were negligible along the tidal periods in the Uldolmok waterway. Therefore, the advection, transfer and loss of zooplankton population derived from strong tidal current and eddy formed by the local difference of tidal velocity lead temporal variation of zooplankton community more complex and variable in the Uldolmok waterway.

A Study of Variation Characteristics of the Phytoplankton Community by UPLC Located in the Jinju Bay, Korea (UPLC를 이용한 남해 진주만 식물플랑크톤 군집 변동특성 연구)

  • Lee, Eugene;Son, Moonho;Kim, Jeong Bea;Lee, Won Chan;Jeon, Ga Eun;Lee, Sang Heon
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.1
    • /
    • pp.62-72
    • /
    • 2018
  • In order to provide important information for the efficient management of the identified farm ecosystem in Jinju Bay, we investigated the spatial and temporal distribution of the phytoplankton community using a UPLC pigment analysis and a CHEMTAX program from the timeframe of February 2013 to January 2014. In addition, we measured the available physical and chemical parameters controlling the distribution of the phytoplankton communities. As a result of this comprehensive pigment analysis, it was noted that the Diatoms were the predominant species with an average of 77.1% as noted located in Jinju Bay. It was discovered that during the summer season, the phytoplankton community composition was changed by a reduction of diatoms and noted increases of the Cryptophytes, Prasinophytes, and Dinoflagellates. Especially, it was noted that the Cryptophytes and Prasinophytes were shown with an average of 18.8% and 17.8% in June, respectively. However, it was revealed that the Cryptophytes and Prasinophytes were not shown by a microscopic observation. The phytoplankton community composition was correlated with the temperature and salinity variations as noticed in the Jinju Bay. Therefore, the water temperature and freshwater inputs in the Jinju Bay were important environmental factors for controlling the phytoplankton community composition and the varying Cryptophytes and the noted amounts of Prasinophytes as well.

PRELIMINARY FEASIBILITY STUDY OF THE SOLAR OBSERVATION PAYLOADS FOR STSAT-CLASS SATELLITES

  • Moon, Yong-Jae;Cho, Kyung-Seok;Jin, Ho;Chae, Jong-Chul;Lee, Sung-Ho;Seon, Kwang-Il;Kim, Yeon-Han;Park, Young-Deuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.329-342
    • /
    • 2004
  • In this paper, we present preliminary feasibility studies on three types of solar observation payloads for future Korean Science and Technology Satellite (STSAT) programs. The three candidates are (1) an UV imaging telescope, (2) an UV spectrograph, and (3) an X-ray spectrometer. In the case of UV imaging telescope, the most important constraint seems to be the control stability of a satellite in order to obtain a reasonably good spatial resolution. Considering that the current pointing stability estimated from the data of the Far ultraviolet Imaging Spectrograph (FIMS) onboard the Korean STSAT-1, is around 1 arc minutes/sec, we think that it is hard to obtain a spatial resolution sufficient for scientific research by such an UV Imaging Telescope. For solar imaging missions, we realize that an image stabilization system, which is composed of a small guide telescope with limb sensor and a servo controller of secondary mirror, is quite essential for a very good pointing stability of about 0.1 arcsec. An UV spectrograph covering the solar full disk seems to be a good choice in that there is no risk due to poor pointing stability as well as that it can provide us with valuable UV spectral irradiance data valuable for studying their effects on the Earth's atmosphere and satellites. The heritage of the FIMS can be a great advantage of developing the UV spectrograph. Its main disadvantage is that two major missions are in operation or scheduled. Our preliminary investigations show that an X-ray spectrometer for the full disk Sun seems to be the best choice among the three candidates. The reasons are : (1) high temporal and spectral X-ray data are very essential for studying the acceleration process of energetic particles associated with solar flares, (2) we have a good heritage of X-ray detectors including a rocket-borne X-ray detector, (3) in the case of developing countries such as India and Czech, solar X-ray spectrometers were selected as their early stage satellite missions due to their poor pointing stabilities, and (4) there is no planned major mission after currently operating Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) mission. Finally, we present a preliminary design of a solar X-ray spectrometer covering soft X-ray (2 keV) to gamma ray (10 MeV).

Development of a Method of Cybersickness Evaluation with the Use of 128-Channel Electroencephalography (128 채널 뇌파를 이용한 사이버멀미 평가법 개발)

  • Han, Dong-Uk;Lee, Dong-Hyun;Ji, Kyoung-Ha;Ahn, Bong-Yeong;Lim, Hyun-Kyoon
    • Science of Emotion and Sensibility
    • /
    • v.22 no.3
    • /
    • pp.3-20
    • /
    • 2019
  • With advancements in technology of virtual reality, it is used for various purposes in many fields such as medical care and healthcare, but as the same time there are also increasing reports of nausea, eye fatigue, dizziness, and headache from users. These symptoms of motion sickness are referred to as cybersickness, and various researches are under way to solve the cybersickness problem because it can cause inconvenience to the user and cause adverse effects such as discomfort or stress. However, there is no official standard for the causes and solutions of cybersickness at present. This is also related to the absence of tools to quantitatively measure the cybersickness. In order to overcome these limitations, this study proposed quantitative and objective cybersickness evaluation method. We measured 128-channel EEG waves from ten participants experiencing visually stimulated virtual reality. We calculated the relative power of delta and alpha in 11 regions (left, middle, right frontal, parietal, occipital and left, right temporal lobe). Multiple regression models were obtained in a stepwise manner with the motion sickness susceptibility questionnaire (MSSQ) scores indicating the susceptibility of the subject to the motion sickness. A multiple regression model with the highest under the area ROC curve (AUC) was derived. In the multiple regression model derived from this study, it was possible to distinguish cybersickness by accuracy of 95.1% with 11 explanatory variables (PD.MF, PD.LP, PD.MP, PD.RP, PD.MO, PA.LF, PA.MF, PA.RF, PA.LP, PA.RP, PA.MO). In summary, in this study, objective response to cybersickness was confirmed through 128 channels of EEG. The analysis results showed that there was a clearly distinguished reaction at a specific part of the brain. Using the results and analytical methods of this study, it is expected that it will be useful for the future studies related to the cybersickness.

Fast Algorithm for Disparity Estimation in ATSC-M/H based Hybrid 3DTV (ATSC-M/H 기반의 융합형 3DTV를 위한 양안시차 고속 추정 알고리즘)

  • Lee, Dong-Hee;Kim, Sung-Hoon;Lee, Jooyoung;Kang, Dongwook;Jung, Kyeong-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.19 no.4
    • /
    • pp.521-532
    • /
    • 2014
  • ATSC-M/H based hybrid 3DTV, which is one of the service compatible 3DTV system, has considerable quality gap between the left and right views. And CRA(Conditional Replenishment Algorithm) has been proposed to deal with the issue of resolution mismatch and improve the visual quality. In CRA, the disparity vectors of stereoscopic images are estimated. The disparity compensated left view and simply enlarged right view are compared and conditionally selected for generating the enhanced right view. In order to implement CRA, a fast algorithm is strongly required because the disparity vectors need to be obtained at every layer and the complexity of CRA is quite high. In this paper, we adopted SDSP(Small Diamond Search Pattern) instead of full search and predicted the initial position of search pattern by examining the spatio-temporal correlation of disparity vectors and also suggested the SKIP mode to limit the number of processing units. The computer simulation showed that the proposed fast algorithm could greatly reduce the processing time while minimizing the quality degradation of reconstructed right view.

Study of spatial temperature distribution during combustion process in a high temperature and pressure constant volume chamber (고온 고압 정적 연소실에서 연소과정에 따른 온도 분포 측정)

  • Kim, Ki-hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.345-350
    • /
    • 2017
  • Downsizing is widely applied to diesel engines in order to improve fuel efficiency and reduce exhaust emissions. Engine sizes are becoming smaller but pressure and temperature inside combustion chambers are increasing. Therefore, research for fuel spray under high pressure and temperature conditions is important. A constant volume chamber which simulates high temperature and pressure likely to be found in diesel engines was developed in this study. Pressure and temperature were increased abruptly because of ignition of the pre-mixture in the constant volume chamber. Then pressure and temperature were gradually decreased due to the heat loss through the chamber wall. Fuel spray occurred when temperature and pressure were reached at the target condition. In this experiment, the temperature condition should be exactly defined to understand the relation between fuel evaporation and ambient temperature. A fast response thermocouple was developed and used to measure the temporal and spatial temperature distribution during the combustion process inside the combustion chamber. In the results, the core temperature was slightly higher than the bulk temperature calculated by the gas equation. Ed-note: do you want to say 'ideal gas equation'? This was attributed to the heat transfer loss through the chamber wall. The vertical temperature deviation was higher than the horizontal temperature deviation by 5% which resulted from the buoyancy effect.

Temporal and spatial Analysis of Sea Surface Temperature and Thermal Fronts in the Korean Seas by Satellite data

  • Yoon Hong-Joo;Byun Hye-Kyung
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.696-700
    • /
    • 2004
  • In the Korean seas, Sea Surface Temperature (SST) and Thermal Fronts (TF) were analyzed temporally and spatially during 8 years from 1993 to 2000 using NOAA/AVHRR MCSST. As the result of harmonic analysis, distributions of the mean SST were $10~25^{\circ}C,$ and generally SST decreased as latitude increased. SST increased in the order as following; the South Sea $(20\~23^{\circ}C),$ the East Sea $(17\~19^{\circ}C)$, and the West $Sea(13\~16^{\circ}C).$ Annual amplitudes and phases were $4\~11^{\circ}C,\;210\~240^{\circ}$ and high values were shown as following; the West Sea $(A1,\;9\~11^{\circ}C),$ the Northern East Sea $(A5,\;8\~9^{\circ}C),$ the Southern East Sea $(A4,\;6\~8^{\circ}C),$ the South Sea $(A3,\;6\~7^{\circ}C),$ the East China Sea $(A2,\;4\~7^{\circ}C)$ and phases; $A3\;(238\~242^{\circ}),\;A4\;(235\~240^{\circ}),\;A5\;(225\~235^{\circ}),\;Al\;(220\~230^{\circ}),\;A2\;(210\~235^{\circ}),$ respectively, Both of them were related inversely except the area A2, therefore the rest areas were affected by seasonal variations. TF were detected by Soble Edge Detection Method using gradient of SST. Consequently, TF were divided into 4 fronts; the Subpolar Front (SPF) based on the Cold Water Mass (low SST and salinity Subartic Water), resulting from the North Korea Cold Current (NKCC) and the East Sea Proper Cold Water in the middle and low layer, and the Warm Water Mass (high SST and salinity Subtropical Water), resulting from the Tsushima Warm Current (TWC) in area A4 and 5, the Kuroshio Front (KF) based on the Kuroshio Current (KC) and shelf waters in the East China Sea (ESC) in A2, and the South Sea Coastal Front (SSCF) based on the South Sea Coastal Water (SSCW) and TWC in A3. Also, the Tidal Front was weakly appeared in AI. TF located in steep slope of submarine topography. Annual amplitudes and phases were bounded in the same place, and these results should be considered to influence of seasonal variations.

  • PDF

Coliform Pollution Status of Nakdong River and Tributaries (낙동강수계 본류와 유입지천의 대장균군 오염도)

  • Lee, Hae-Jin;Park, Hae-Kyung;Lee, Jae Hak;Park, A Reum;Cheon, Se-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.3
    • /
    • pp.271-280
    • /
    • 2016
  • The aim of this study was to analyze spatial and temporal patterns of bacterial pollution levels and the relationship between bacterial pollutants and environmental parameters at the main stream and tributaries of Nakdong River. Water quality data including total coliform and fecal coliform were compiled from a total of 50 monitoring sites (30 at the main stream and 20 at the tributaries) along with rainfall and discharge data for three consecutive years from 2012 to 2014. During the study periods, the geometric mean values of total coliforms and fecal coliforms in the main stream were 74 (22~465) CFU/100 mL and 8 (3~42) CFU/100 mL, respectively. The geometric mean values of total coliforms and fecal coliforms in the tributaries were 275 (36~5,145) CFU/100 mL and 6 (1~1,352) CFU/100 mL, respectively. High concentrations of fecal coliforms were observed at Gumi (M 10), Hyeonpung (M 19), Hapcheon (M 23), and Namji (M 25) in the main stream, whereas Gamcheon (T 6), Bakcheon (T 7), Geumho-gang (T 8), and Gyeseongcheon (T 16) were identified as pollution hot spots in the tributaries. Although bacterial pollution levels showed complex behavior across monitoring sites and time, the highest coliform concentrations were routinely observed in the monsoon season between July and September of each year, indicating that the pollution levels were strongly dependent on precipitation in addition to other physiochemical parameters. Statistically significant correlations were found between fecal coliform concentrations and precipitation (r=0.403, p<0.01), followed by SS (r=0.425, p<0.01), nutrient TP (r=0.388, p<0.01), organic matter COD (r=0.322, p<0.01), and PO4-P (r=0.317, p<0.01) in the main stream in the order of correlation coefficient from high to low.