Proceedings of the Korea Water Resources Association Conference
/
2009.05a
/
pp.1207-1210
/
2009
The goal of this research is to apply the neural networks models for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks models consist of generalized regression neural networks model (GRNNM) and multilayer perceptron neural networks model (MLP-NNM), respectively. The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks models, they are composed of training and test performances, respectively. The training and test performances consist of the only historic data, respectively. From this research, we evaluate the impact of GRNNM and MLP-NNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE data from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.
Proceedings of the Korea Water Resources Association Conference
/
2009.05a
/
pp.1215-1218
/
2009
The goal of this research is to apply the neural networks models for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks models consist of generalized regression neural networks model (GRNNM) and multilayer perceptron neural networks model (MLP-NNM), respectively. The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks models, they are composed of training and test performances, respectively. The training data consist of the mixed data The mixed data involves the historic data and the generated data using PARMA (1,1). And, the testing data consist of the only historic data, respectively. From this research, we evaluate the impact of GRNNM and MLP-NNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE data from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.
Proceedings of the Korea Water Resources Association Conference
/
2009.05a
/
pp.1211-1214
/
2009
The goal of this research is to apply the neural networks models for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks models consist of generalized regression neural networks model (GRNNM) and multilayer perceptron neural networks model (MLP-NNM), respectively. The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks models, they are composed of training and test performances, respectively. The training data consist of the generated data using PARMA (1,1). And, the testing data consist of the historic data, respectively. From this research, we evaluate the impact of GRNNM and MLP-NNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE data from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.
Kim, Sungwon;Kim, Jung-Hun;Park, Ki-Bum;Kim, Hung Soo
KSCE Journal of Civil and Environmental Engineering Research
/
v.30
no.4B
/
pp.399-412
/
2010
The goal of this research is to apply the neural networks models for the temporal disaggregation of the yearly pan evaporation (PE) data, Republic of Korea. The neural networks models consist of multilayer perceptron neural networks model (MLP-NNM) and generalized regression neural networks model (GRNNM), respectively. And, for the performances evaluation of the neural networks models, they are composed of training and test performances, respectively. The three types of data such as the historic, the generated, and the mixed data are used for the training performance. The only historic data, however, is used for the testing performance. From this research, we evaluate the application of MLP-NNM and GRNNM for the temporal disaggregation of nonlinear time series data. We should, furthermore, construct the credible monthly PE data from the temporal disaggregation of the yearly PE data, and can suggest the available data for the evaluation of irrigation and drainage networks system.
In this study, rainfall data with various temporal scales (3-, 6-, 12-, 24-hr) are disaggregated into 1-hourly rainfall data to evaluate the performance of rainfall disaggregation technique. The rainfall disaggregation technique is based on a database generated by the stochastic point rainfall model, the Neyman-Scott Rectangular Pulse Model (NSRPM). Performance evaluation is carried out using July rainfall data of Ulsan, Changwon, Busan and Milyang weather stations in Korea. As a result, the rainfall disaggregation technique showed excellent performance that can consider not only the major statistics of rainfall but also the spatial correlation. It also indirectly shows the uncertainty of future climate change scenarios with daily temporal scale. The rainfall disaggregation technique is expected to disaggregate the future climate change scenarios, and to be effective in the future watershed management.
Kim, Daeha;Yoon, Sun-Kwon;Kang, Moon Seong;Lee, Kyung-do
Journal of The Korean Society of Agricultural Engineers
/
v.58
no.5
/
pp.91-99
/
2016
High resolution rainfall data at 1-hour or a finer scale are essential for reliable flood analysis and forecasting; nevertheless, many observations, forecasts, and climate projections are still given at coarse temporal resolutions. This study aims to evaluate a chaotic method for disaggregation of 6-hour rainfall data sets so as to apply operational 6-hour rainfall forecasts of the Korean Meteorological Association to flood models. We computed parameters of a state-of-the-art multiplicative random cascade model with two combinations of cascades, namely uniform splitting and diversion, using rainfall observations at Seoul station, and compared statistical performance. We additionally disaggregated 6-hour rainfall time series at 58 stations with the uniform splitting and evaluated temporal transferability of the parameters and changes in multifractal properties. Results showed that the uniform splitting outperformed the diversion in reproduction of observed statistics, and hence is better to be used for disaggregation of 6-hour rainfall forecasts. We also found that multifractal properties of rainfall observations has adequate temporal consistency with an indication of gradually increasing rainfall intensity across South Korea.
Proceedings of the Korea Water Resources Association Conference
/
2010.05a
/
pp.1346-1349
/
2010
The goal of this research is to apply the neural networks models for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks models consist of generalized regression neural networks model (GRNNM) and multilayer perceptron neural networks model (MLP-NNM), respectively. The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks models, they are composed of training and test performances, respectively. The training and test performances consist of the historic, the generated, and the mixed data, respectively. From this research, we evaluate the impact of GRNNM and MLP-NNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.
Hydrological simulation Program-Fortran (HSPF) model was used to simulate streamflow and snow depth at Pyengchang watershed. The selected Global Climate Models (GCMs) provided by the Coupled Model Intercomparision Project Phase 3 (CMIP3) were utilized to evaluate streamflow and snow depth driven by future climate scenarios, including A1, A1B, and B1. Bias-correlation and temporal downscaling processes have been performed to minimize systematic errors between GCMs and HSPF. Based on simulated monthly streamflow and snow depth after calibration, the results indicate that HSPF performs well. The correlation coefficient between the observed and simulated monthly streamflow is 0.94. Snow depth simulations also show high correlation coefficient, which is 0.91. The results indicate that snow depth in 2018 at Pyongchang winter olympic venues will decrease by 17.62%, 9.38%, and 7.25% in January, February, and March respectively, based on streamflow realizations induced by all GCMs ensembles.
Lee, Hyunji;Jun, Sang Min;Hwang, Soon Ho;Choi, Soon-Kun;Park, Jihoon;Kang, Moon Seong
Journal of The Korean Society of Agricultural Engineers
/
v.62
no.1
/
pp.17-27
/
2020
The objective of this study was to assess the flood probability based on temporal distribution of forecasted-rainfall in Cheongmicheon watershed. In this study, 6-hr rainfalls were disaggregated into hourly rainfall using the Multiplicative Random Cascade (MRC) model, which is a stochastic rainfall time disaggregation model and it was repeated 100 times to make 100 rainfalls for each storm event. The watershed runoff was estimated using the Clark unit hydrograph method with disaggregated rainfall and watershed characteristics. Using the peak discharges of the simulated hydrographs, the probability distribution was determined and parameters were estimated. Using the parameters, the probability density function is shown and the flood probability is calculated by comparing with the design flood of Cheongmicheon watershed. The flood probability results differed for various values of rainfall and rainfall duration. In addition, the flood probability calculated in this study was compared with the actual flood damage in Cheongmicheon watershed (R2 = 0.7). Further, this study results could be used for flood forecasting.
This study implemented the prediction of drought properties (number of drought events, intensity, duration) using the user-oriented systematical procedures of downscaling climate change scenarios based the multiple global climate models (GCMs), AIMS (APCC Integrated Modeling Solution) program. The drought properties were defined and estimated with Effective Drought Index (EDI). The optimal 10 models among 29 GCMs were selected, by the estimation of the spatial and temporal reproducibility about the five climate change indices related with precipitation. In addition, Simple Quantile Mapping (SQM) as the downscaling technique is much better in describing the observed precipitation events than Spatial Disaggregation Quantile Delta Mapping (SDQDM). Even though the procedure was systematically applied, there are still limitations in describing the observed spatial precipitation properties well due to the offset of spatial variability in multi-model ensemble (MME) analysis. As a result, the farther into the future, the duration and the number of drought generation will be decreased, while the intensity of drought will be increased. Regionally, the drought at the central regions of the Korean Peninsula is expected to be mitigated, while that at the southern regions are expected to be severe.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.