DOI QR코드

DOI QR Code

기후모형(GCMs)에 기반한 2018년 평창 동계올림픽 적설량 및 수문모의

GCMs-Driven Snow Depth and Hydrological Simulation for 2018 Pyeongchang Winter Olympics

  • 김정진 (미국 아이다호대학교 농생공학과) ;
  • 류재현 (미국 아이다호대학교 농생공학과)
  • Kim, Jung Jin (Department of Biological & Agricultural Eng., Univ. of Idaho) ;
  • Ryu, Jae Hyeon (Department of Biological & Agricultural Eng., Univ. of Idaho)
  • 투고 : 2012.09.13
  • 심사 : 2012.10.22
  • 발행 : 2013.03.31

초록

평창유역의 적설량을 모의하기 위하여 HSPF 모형을 적용하였다. 미래 적설량을 평가하기 위해 CIMIP3에서 제공하는 A1, A1B, B1의 온실가스 배출시나리오에 기반한 GCMs를 이용하였으며, HSPF 모형과 GCMs의 통계학적 오류를 최소화 하기 위해 편의보정(Bias-correction)과 시간적 분해모형(Temporal disaggregation)을 적용하였다. 모형의 검 보정 결과 모의된 유출량과 적설량의 경우 모형 효율이 높게 나타났으며, 특히 모형의 검정 후 상관계수를 분석한 결과 월별 유출량의 상관계수는 0.94로 나타났다. 월별 적설량, 또한, 상관계수가 0.91로 나타나 보정된 HSPF 모형이 평창지역에 대한 유출량과 적설량을 잘 모의하고 있는 것으로 판단된다. GCMs를 이용한 2018년 평창올림픽 경기장의 적설량을 분석한 결과 1월에는 17.62%, 2월에는 9.38%, 3월에는 7.25%의 적설량이 감소되는 것으로 나타났다.

Hydrological simulation Program-Fortran (HSPF) model was used to simulate streamflow and snow depth at Pyengchang watershed. The selected Global Climate Models (GCMs) provided by the Coupled Model Intercomparision Project Phase 3 (CMIP3) were utilized to evaluate streamflow and snow depth driven by future climate scenarios, including A1, A1B, and B1. Bias-correlation and temporal downscaling processes have been performed to minimize systematic errors between GCMs and HSPF. Based on simulated monthly streamflow and snow depth after calibration, the results indicate that HSPF performs well. The correlation coefficient between the observed and simulated monthly streamflow is 0.94. Snow depth simulations also show high correlation coefficient, which is 0.91. The results indicate that snow depth in 2018 at Pyongchang winter olympic venues will decrease by 17.62%, 9.38%, and 7.25% in January, February, and March respectively, based on streamflow realizations induced by all GCMs ensembles.

키워드

참고문헌

  1. Kim, K.-N. (2009). "Gangwon-do's Long-term Climate Change Estimation Study[I] (2009)." Research Institute for Gangwon, Research Report 09-42, p. 133
  2. Bae, D.H., Jung, I.W., Lee, B.J., and Lee, M.H. (2011). "Future Korean Water Resources Projection Considering Uncertainty of GCMs and Hydrological Models." Journal of Korean Water Resources Association, Vol. 44, No. 5, pp. 389-406. https://doi.org/10.3741/JKWRA.2011.44.5.389
  3. Acharya, A., and Ryu, J.H. (2012). "Streamflow disaggregation using a relatively simple method for regulated and unregulated waterways." Journal of Hydrologoic Engineering (under reviewing).
  4. Arnell, N.W. (1999). "A simple water balance model for the simulation of streamflow over a large geographic domain." Journal of Hydrologic Engineering, Vol. 217, No. 3-4, pp. 314-335.
  5. Bicknell, B.R., Imhoff, J.C., Kittle, J.L., Jobes, T.H., and Donigian, A.S. (2001). Hydrological Simulation Program- Fortran HSPF Version 12 User's Manual. US Environmental Protection Agency, National Exposure Research Laboratory, Athens, Georgia, USA.
  6. Campbell, J.L., Driscoll, C.T., Pourmokhtarian, A., and Hayhoe, K. (2011). "Streamflow responses to past and projected future changes in climate at the Hubbard Brook Experimental Forest, New Hampshire, United States."Water Resource Research, Vol. 47, pp. 2514-2529.
  7. Cayan, D.R., Maurer, E.P., Dettinger, M.D., Tyree, D., and Hayhoe, K. (2008). "Climate change scenarios for the California region." Climate Change, Vol. 87, No. 1, pp. 21-42. https://doi.org/10.1007/s10584-007-9377-6
  8. Christensen, N.S., and Lettenmaier, D.P. (2007). "A multimodel ensemable approach to asseement of climate change impacts on the hydrology and water resources of the Colorado River Basin." Hydrology and Earth System Sciences, Vol. 11, No. 3, pp. 1417-1434. https://doi.org/10.5194/hess-11-1417-2007
  9. Donigian, A.S. (2002). Watershed Model Calibration and Validation: The HSPF Experience, National TMDL Science and Policy Specialty Conference 2002. Water Environment Federation, Phoenix, Arizona.
  10. EPA. (2000). EPA BASINS Technical Note 6: Estimating Hydrology and Hydraulic Parameters for HSPF. U.S. Environmental Protection Agency, Office of Water, Washington, DC, USA.
  11. FAO. (1998). Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Natural Resources Management and Environment Department. chart 3.
  12. Hayhoe, K., Cayan, D., Field, C.B., Frumhoff, P.C., Maurer, E.P., Miller, N.L., Moser, S.C., Schneider, S.H., Cahill, K.N., Cleland, E.E., Dale, L., Drapek, R., Hanemann, M., Salkstein, L.S., Lenihan, J., Lunch, C.K., Neilson, R.P., Scheridan, S.C., and Verville, J.H. (2004). "Emissions pathway, climate change, and impacts on California." Proc. Natl, Acad, Sci. U.S.A., Vol. 101, No. 12, pp. 422-427.
  13. Im, E.S., Jung, I.W., Chang, H., and Bae, D.H. (2010). "The temporal and spacial structures of recent and future trends in extreme indices over Korea from a regional climate projection." International Journal of Climatology, Vol. 31, No. 1, pp. 72-86, 10.1002/joc.2063.
  14. Li, H., Sheffied, J., and Wood, E.F. (2010). "Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching." Journal of Geophysical Research, Vol. 115, pp. 148-227.
  15. Maurer, E.P., and Hidalogo, H.G. (2008). "Utility of daily vs. monthly largescale climate data; An intercomparison of two statistical downscaling methods." Hydrol. Earth Syst. Sci., Vol. 12, pp. 551-563. https://doi.org/10.5194/hess-12-551-2008
  16. Maurer, E.P., Hidalgo, H.G., Das, T., Dettinger, M.D., and Cayan, D.R. (2010). "The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California." Hydrology and Earth System Sciences, Vol. 14, pp. 1125-1138. https://doi.org/10.5194/hess-14-1125-2010
  17. Mimikou, M.A., Baltas, E., Varanou, E., and Pantazis, K. (2000). "Reginoal impacts of climate change on water resources quantity and quality indicator." Journal of Hydrologcy, Vol. 234, pp. 95-109. https://doi.org/10.1016/S0022-1694(00)00244-4
  18. Monteith, J.L. (1965). "Evaporation and environment. pp. 205-234. In G.E. Fogg Symposium of the Society for Experimental Biology." The State and Movement of Water in Living Organisms, Vol. 19, Academic Press, Inc., NY.
  19. Nash, J.E., and Sutcliffe, J.V. (1970). "River flow forecasting through conceptual models." Journal ofHydrology, Vol. 10, No. 3, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  20. Praskievicz, S., and Chang, H. (2009). "A review of hydrological modeling of basin-scale climate change and urban developemnt impact." Physical Geography, Vol. 33, No. 5, pp. 650-671. https://doi.org/10.1177/0309133309348098
  21. Ryu, J.H., Palmer, R.N., Wiley, M.W., and Jeong, S.M. (2009). "Mid-range Streamflow Forecasts based on Climate Modeling-Statistical Correlation and evaluation." Journal of the American Water Resources Association, Vol. 45, No. 2, pp. 355-368. https://doi.org/10.1111/j.1752-1688.2008.00292.x
  22. Shin, H.-J., and Kim, S.J. (2007). "Assessment of Climate Change Impact on Snowmelt in the Two Mountainous Watershed Using CCCma CGCM2." KSCE Journal of Civil Engineering, Vol. 11, No. 6, pp. 311-319. https://doi.org/10.1007/BF02885902
  23. Vliet, M.T.H., Yearsely, J.R., Franssen, W.H.P., Sudwiing, F., Haddeland, I., Lettenmaier, D.P., Lettenmaier, D.P., and Kabat, P. (2012). "Coupled daily streamflow and water temperature modeling in large river basins." Hydrology and Earth System Sciences, Vol. 9, pp. 8335-8374. https://doi.org/10.5194/hessd-9-8335-2012
  24. Wilby, R.L. (2005). "Uncertainty in water resource model parameters used for climate change impact assessment." Hydrological Processes, Vol. 19, No. 16, pp. 3201-2119. https://doi.org/10.1002/hyp.5819

피인용 문헌

  1. Projection of Climate Change with Uncertainties: 1. GCM and RCP Uncertainties vol.14, pp.5, 2014, https://doi.org/10.9798/KOSHAM.2014.14.5.317