• Title/Summary/Keyword: Tempering

Search Result 313, Processing Time 0.021 seconds

Adjustment of Roll Gap for The Dimension Accuracy of Bar in Hot Bar Rolling Process (열간 선재 압연제품의 치수정밀도 향상을 위한 롤 갭 조정)

  • Kim, Dong-Hwan;Kim, Byung-Min;Lee, Young-Seog
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.96-103
    • /
    • 2002
  • The objective of this study is to adjust the roll gap fur the dimension accuracy of bar in hot bar rolling process considering roll wear. In this study hot bar rolling processes fur round and oval passes have been investigated. In order to predict the roll wear, the wear model is reformulated as an incremental from and then wear depth of roll is calculated at each deformation step on contact area using the results of finite element analysis, such as relative sliding velocity and normal pressure at contact area. Archard's wear model was applied to predict the roll wear. To know the effects of thermal softening of DCI (Ductile Cast Iron) roll material according to operating conditions, high temperature micro hardness test is executed and a new wear model has been proposed by considering the thermal softening of DCI roll expressed in terms of the main tempering curve. The new technique developed in this study for adjusting roll gap can give more systematically and economically feasible means to improve the dimension accuracy of bar with full usefulness and generality.

Hardness Distribution and Microstructures of Electric Resistance Spot Welded 1GPa Grade Dual Phase Steel (1GPa급 DP강 전기저항점용접부의 경도분포와 미세조직의 상관관계)

  • Na, Hye-Sung;Kong, Jong-Pan;Han, Tae-Kyo;Chin, Kwang-Geun;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.30 no.2
    • /
    • pp.76-80
    • /
    • 2012
  • In this study, the effect of the welding current on the hardness characteristics and microstructure in the resistance spot welding of 1GPa grade cold-rolled DP steel was investigated, Also, correlation between the hardness and microstructure was discussed. In spite of the change in the welding current, the hardness distributions near weld was similar. the hardness in the HAZ and the fusion zone was higher than that of the base metal and the hardness in the fusion zone was variated with the location. Especially, the hardness of HAZ adjacent to the base metal showed maximum value, and softening zone in the base metal adjacent to HAZ was found. With the increasing of welding current, there were no difference in maximum hardness and average hardness in the fusion zone were, but the hardness of the softening zone reduced. The difference in the hardness in each location of weld due to grain size of prior austenite. The softening of the base metal occurred by tempering of the martensite.

Screen Capture Authentication System for Web Postings to Used as Digital Evidence (디지털 증거 활용을 위한 웹 게시물 화면캡쳐 인증 시스템)

  • Kang, Ju Young;Lee, Sang Jin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.1
    • /
    • pp.9-16
    • /
    • 2017
  • In modern society, everyone can easily access the Internet and freely express their opinions or ideas on Web bulletin boards or SNS. At the same time, they are often used as a place of slandering and the spreading of false information about celebrities such as entertainers and politicians. Typically people use the screen capture method to submit web posts as evidence in lawsuits. But it is difficult to get these accepted as evidence in court because screen captured images are easily forged and tempered. Therefore, as described above, using "Proxy Browser", we propose a screen capture authentication system for web posts that protects forging and tempering to use as digital evidence in court.

A Study on the Fatigue Crack Growth Behavior and Fracture Toughness of Martensitic Stainless Steel(12%Cr) (마르텐사이트계 스테인리스강 (12%Cr) 의 피로균열 진전거동 및 파괴인성연구)

  • 윤병주
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.154-160
    • /
    • 2000
  • Martensitic stainless steels containing 12%Cr are commonly used in quenched and tempered conditions. The quenching heat treatment involves annealing to obtain austenite and to dissolve the carbides , followed by cooling to transform the austenite into martensite and often to cause carbide predipitation. In this study, we used three different tempered specimens which were temperated at 30$0^{\circ}C$, 67$0^{\circ}C$ and 75$0^{\circ}C$ . The crack propagation and fracture toughness tests were performed on this three different specimens. The experimental results showed that the highest value of crack growth rate and the lowest value of fracture toughness were observed in the specimen which were temperated at $600^{\circ}C$, however, when the specimen were temperated at 75$0^{\circ}C$, the vale of crack growth rate was significantly decreased and the value of fracture toughness was significantly increased as compared to which were temperated at $600^{\circ}C$.

  • PDF

Adjustment of Roll Gap for the Dimension Accuracy of Bar in Hot Bar Rolling Process

  • Kim, Dong-Hwan;Kim, Byung-Min;Lee, Youngseog
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.1
    • /
    • pp.56-62
    • /
    • 2003
  • The objective of this study is to adjust the roll gap for the dimension accuracy of bar in hot bar rolling process considering roll wear. In this study hot bar rolling processes for round and oval passes have been investigated. In order to predict the roll wear, the wear model is reformulated as an incremental form and then wear depth of roll is calculated at each deformation step on contact area using the results of finite element analysis, such as relative sliding velocity and normal pressure at contact area. Archard's wear model was applied to predict the roll wear. To know the effects of thermal softening of DCI (Ductile Cast Iron) roll material according to operating conditions, high temperature micro hardness test is executed and a new wear model has been proposed by considering the thermal softening of DCI roll expressed in terms of the main tempering curve. The new technique developed in this study for adjusting roll gap can give more systematically and economically feasible means to improve the dimension accuracy of bar with full usefulness and generality.

Die Life Estimation of Hot Forging for Surface Treatment and Lubricants (표면처리 및 윤활제에 따른 열간 단조 금형의 수명 평가)

  • 이현철;김병민;김광호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.26-35
    • /
    • 2003
  • This study explains the effects of lubricant and surface treatment on hot forging die life. The mechanical and thermal load, and thermal softening which is happened by the high temperature of die, in hot and warm forging, cause die wear, heat checking and plastic deformation, etc. This study is fur the effects of solid lubricants and surface treatment condition for hot forging die. Because cooling effect and low friction are essential to the long life of dies, optimal surface treatment and lubricant are very important to improve die life for hot forging process. The main factors, which affect die hardness and heat transfer, are surface treatments and lubricants, which are related to thermal diffusion coefficient and heat transfer coefficient, etc. For verifying these effects, experiments are performed for hot ring compression test and heat transfer coefficient in various conditions as like different initial billet temperatures and different loads. The effects of lubricant and surface treatment for hot forging die life are explained by their thermal characteristics. The new developed technique in this study for predicting tool life can give more feasible means to improve the tool life in hot forging process.

A Study on the Friction and Wear Characteristics of C-N Coated Spur Gear (C-N 코팅 스퍼기어의 마찰${\cdot}$마모 특성에 관한 연구)

  • Lu Long;Lyu Sung-ki
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.41-46
    • /
    • 2004
  • This study deals with the friction and wear characteristics of C-N coated spur gear. The PSII apparatus was built and a SCM415 test piece and test gear with steel substrate was treated with carbon nitrogen by this apparatus. The composition and structure of the surface layer were analyzed and compared with that of PVD coated TiN layer. It was found that both of friction coefficients of C-N coating and TiN coaling decreased with increasing load, however, C-N coating showed relatively lower friction coefficient than that of TiN coating. We was investigated the effect of C-N coating on hardness, friction and wear. The TiN coated gear showed more serious friction phenomena than that of C-N coated gear. It was considered that coating of TiN, which was conducted at a vacuum chamber at about $500^{\circ}C$ results in a tempering of base material that causes microstructure change, which in turn resulted in decreasing of hardness. The C-N coated gear and pinion had higher wear resistance that of TiN coated gear and pinion. C-N coating significantly improved the friction and wear resistance of the gear.

  • PDF

Study on the Cold Formability of Drawn Non-heat Treated Steels (신선 가공된 열처리 생략강의 냉간 성형성에 대한 연구)

  • 박경수;박용규;이덕락;이종수
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.364-369
    • /
    • 2003
  • Non-heat treated steels are attractive in the steel-wire industry since the spheroidization and quenching-tempering treatment are not involved during the processing. However, non-heat treated steels should satisfy high strength and good formability without performing heat treatment. Therefore, it is important to investigate optimum materials showing a good combination of strength and formability after the drawing process. In this study, three different steels such as dual phase steel, low-Si steel, and ultra low carbon bainitic steel were used to study their mechanical properties and the cold formability. The cold formability of three steels was investigated by estimating the deformation resistance and the forming limit. The deformation resistance was estimated by calculating the deformation energy, and the forming limit was evaluated by measuring the critical strain revealing crack initiation at the notch tip of the specimens. The results showed that deformation resistance was the lowest in the low-Si steel, and the forming limit strains of ultra low carbon bainitic steel and low-Si steel were higher than that of commercial SWRCH45F steel.

Effect of Cr on Mechanical Properties and Microstructure in 0.27% C-1.0% Si-1.5% Mn Steel (0.27% C-1.0% Si-1.5% Mn 강의 미세조직과 기계적성질에 미치는 Cr의 영향)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.4
    • /
    • pp.181-189
    • /
    • 2016
  • The variation in microstructure and mechanical properties during heat treatment was examined in a series of 0.27% C-1.0% Si-1.5% Mn steels with chromium contents in the range of 0 to 1.0 wt%. It was found that chromium decreased the martensite packet size through the austenite grain refinement and increased tensile strength in the as-quenched steel, about 70 MPa per 1.0 wt%. The 0.27% C-1.0% Si-1.5% Mn-1.0% Cr steel showed tensile strength of 1700 MPa in the as-quenched steel. The 0.27% C-1.0% Si-1.5% Mn-1.0% Cr steel revealed a full martensitic structure after air cooling from $900^{\circ}C$ to room temperature, showing air hardening characteristics. Tempering at $150^{\circ}C$ slightly decreased the tensile strength and increased elongation, which is in a good agreement with impact toughness result.

Effect of Phosphorus Addition on Microstructure and Mechanical Properties of Sintered Low Alloy Steel (저합금강 소결체의 미세조직 및 기계적 특성에 미치는 인(P) 첨가의 영향)

  • Kim, Yoo-Young;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.27 no.1
    • /
    • pp.31-36
    • /
    • 2020
  • Phosphorus is an element that plays many important roles in powder metallurgy as an alloy element. The purpose of this study is to investigate the influence of phosphorus addition on the microstructures and mechanical properties of sintered low-alloy steel. The sintered low-alloy steels Fe-0.6%C-3.89%Ni-1.95%Cu-1.40%Mo-xP (x=0, 0.05, 0.10, 0.15, 0.20%) were manufactured by compacting at 700 MPa, sintering in H2-N2 at 1260 ℃, rapid cooling, and low-temperature tempering in Ar at 160 ℃. The microstructure, pore, density, hardness, and transverse rupture strength (TRS) of the sintered low-alloy steels were evaluated. The hardness increased as the phosphorus content increased, whereas the density and TRS showed maximum values when the content of P was 0.05%. Based on microstructure observation, the phase of the microstructure changed from bainite to martensite as the content of phosphorus is increased. Hence, the most appropriate addition of phosphorus in this study was 0.05%.