• 제목/요약/키워드: Temperature stochastic modeling

검색결과 9건 처리시간 0.021초

온도변동성을 고려한 전력수요예측 기반의 확률론적 수요관리량 추정 방법 (A Stochastic Pplanning Method for Semand-side Management Program based on Load Forecasting with the Volatility of Temperature)

  • 위영민
    • 전기학회논문지
    • /
    • 제64권6호
    • /
    • pp.852-856
    • /
    • 2015
  • Demand side management (DSM) program has been frequently used for reducing the system peak load because it gives utilities and independent system operator (ISO) a convenient way to control and change amount of electric usage of end-use customer. Planning and operating methods are needed to efficiently manage a DSM program. This paper presents a planning method for DSM program. A planning method for DSM program should include an electric load forecasting, because this is the most important factor in determining how much to reduce electric load. In this paper, load forecasting with the temperature stochastic modeling and the sensitivity to temperature of the electric load is used for improving load forecasting accuracy. The proposed planning method can also estimate the required day, hour and total capacity of DSM program using Monte-Carlo simulation. The results of case studies are presented to show the effectiveness of the proposed planning method.

Stochastic precipitation modeling based on Korean historical data

  • Kim, Yongku;Kim, Hyeonjeong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권6호
    • /
    • pp.1309-1317
    • /
    • 2012
  • Stochastic weather generators are commonly used to simulate time series of daily weather, especially precipitation amount. Recently, a generalized linear model (GLM) has been proposed as a convenient approach to fitting these weather generators. In this paper, a stochastic weather generator is considered to model the time series of daily precipitation at Seoul in South Korea. As a covariate, global temperature is introduced to relate long-term temporal scale predictor to short-term temporal predictands. One of the limitations of stochastic weather generators is a marked tendency to underestimate the observed interannual variance of monthly, seasonal, or annual total precipitation. To reduce this phenomenon, we incorporate time series of seasonal total precipitation in the GLM weather generator as covariates. It is veri ed that the addition of these covariates does not distort the performance of the weather generator in other respects.

확률 및 통계이론 기반 태양광 발전 시스템의 동적 모델링에 관한 연구 (A Study on Dynamic Modeling of Photovoltaic Power Generator Systems using Probability and Statistics Theories)

  • 조현철
    • 전기학회논문지
    • /
    • 제61권7호
    • /
    • pp.1007-1013
    • /
    • 2012
  • Modeling of photovoltaic power systems is significant to analytically predict its dynamics in practical applications. This paper presents a novel modeling algorithm of such system by using probability and statistic theories. We first establish a linear model basically composed of Fourier parameter sets for mapping the input/output variable of photovoltaic systems. The proposed model includes solar irradiation and ambient temperature of photovoltaic modules as an input vector and the inverter power output is estimated sequentially. We deal with these measurements as random variables and derive a parameter learning algorithm of the model in terms of statistics. Our learning algorithm requires computation of an expectation and joint expectation against solar irradiation and ambient temperature, which are analytically solved from the integral calculus. For testing the proposed modeling algorithm, we utilize realistic measurement data sets obtained from the Seokwang Solar power plant in Youngcheon, Korea. We demonstrate reliability and superiority of the proposed photovoltaic system model by observing error signals between a practical system output and its estimation.

GLM 날씨 발생기를 이용한 서울지역 일일 기온 모형 (A Modeling of Daily Temperature in Seoul using GLM Weather Generator)

  • 김현정;도해영;김용구
    • 응용통계연구
    • /
    • 제26권3호
    • /
    • pp.413-420
    • /
    • 2013
  • 확률적 날씨 발생기(Stochastic weather generator)는 일일 날씨를 생성하는데 일반적으로 사용되는 방법으로 최근에는 일반화선형모형에 기초한 확률적 날씨 발생 방법이 제안되었다. 본 논문에서는 서울지역의 일일 기온을 모형화하하기 위해서 일반화선형모형에 기초한 확률적 날씨 발생기를 고려하였다. 이 모형에서는 계절성을 나타내는 변수와 강우발생 유무가 공변수로 사용되었다. 일반적으로 확률적 날씨 발생기에서는 생성된 일일 날씨가 월별 또는 계절별 총강우량이나 평균온도에 충분한 변동을 만들어 내지 못하는 과대산포 현상이 발생하는데, 이러한 한계를 극복하기 위해 본 연구에서는 평활된 계절별 평균 온도를 일반화선형모형의 공변수로 추가하였다. 그리고 제안된 모형을 1961년부터 2011년까지 51년 동안의 서울지역 일일 평균 기온자료에 적용하였다.

Establishment of DeCART/MIG stochastic sampling code system and Application to UAM and BEAVRS benchmarks

  • Ho Jin Park;Jin Young Cho
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1563-1570
    • /
    • 2023
  • In this study, a DeCART/MIG uncertainty quantification (UQ) analysis code system with a multicorrelated cross section stochastic sampling (S.S.) module was established and verified through the UAM (Uncertainty Analysis in Modeling) and the BEAVRS (Benchmark for Evaluation And Validation of Reactor Simulations) benchmark calculations. For the S.S. calculations, a sample of 500 DeCART multigroup cross section sets for two major actinides, i.e., 235U and 238U, were generated by the MIG code and covariance data from the ENDF/B-VII.1 evaluated nuclear data library. In the three pin problems (i.e. TMI-1, PB2, and Koz-6) from the UAM benchmark, the uncertainties in kinf by the DeCART/MIG S.S. calculations agreed very well with the sensitivity and uncertainty (S/U) perturbation results by DeCART/MUSAD and the S/U direct subtraction (S/U-DS) results by the DeCART/MIG. From these results, it was concluded that the multi-group cross section sampling module of the MIG code works correctly and accurately. In the BEAVRS whole benchmark problems, the uncertainties in the control rod bank worth, isothermal temperature coefficient, power distribution, and critical boron concentration due to cross section uncertainties were calculated by the DeCART/MIG code system. Overall, the uncertainties in these design parameters were less than the general design review criteria of a typical pressurized water reactor start-up case. This newly-developed DeCART/MIG UQ analysis code system by the S.S. method can be widely utilized as uncertainty analysis and margin estimation tools for developing and designing new advanced nuclear reactors.

시계열 기온 분포도 작성을 위한 시공간 자기상관성 정보의 결합 (Use of Space-time Autocorrelation Information in Time-series Temperature Mapping)

  • 박노욱;장동호
    • 한국지역지리학회지
    • /
    • 제17권4호
    • /
    • pp.432-442
    • /
    • 2011
  • 기온, 강수와 같은 기후관측 자료들은 공간과 더불어 시간적인 변이를 동시에 나타낸다. 따라서 신뢰성 높은 시계열 분포도 작성을 위해 공간적 자기상관성만을 고려하는 기존 공간 내삽 기법에 시공간적 자기상관성 정보를 반영할 필요가 있다. 이 연구에서는 시계열 기온 분포도 제작을 위해 1개월 동안 1시간 간격으로 획득된 기온 관측소 자료를 대상으로 시공간 크리깅을 적용하였다. 우선 기온자료를 결정론적 경향 성분과 확률론적 잔차 성분으로 분해한 후에, 경향 성분 모델링 과정에 기온과 연관성이 높은 고도 자료를 부가 자료로 통합하여 지형 효과를 반영하는 경향 성분을 모델링하였다. 잔차 성분에 대한 시공간 베리오그램 모델링에는 곱-합 모델을 적용하여 시간과 공간 베리오그램의 상호 연관성을 반영하도록 하였다. 이러한 시공간 베리오그램 모델을 이용하여 시공간 정규 크리깅을 적용한 결과, 기존 공간적 자기상관성만을 고려하는 정규 크리깅과 고도 자료를 부가 자료로 이용하는 회귀분석 크리깅에 비해 상대적으로 높은 예측 능력을 보였다. 이러한 결과는 고도 자료와 더불어 시공간 자기상관성 정보의 이용이 중요함을 지시한다. 따라서 공간적으로 가용할 수 있는 자료의 수가 한계가 있지만 시계열적으로 자료 획득이 가능한 변수를 분석할 때, 시공간 크리깅이 유용한 내삽 방법론으로 적용될 수 있을 것으로 기대된다.

  • PDF

가우시안 프로세스 회귀를 통한 열 성장 계수 기반의 어류 성장 예측 모델 (TGC-based Fish Growth Estimation Model using Gaussian Process Regression Approach)

  • 성주형;조성윤;정다은;김종원;박정환;권기원;고영명
    • 인터넷정보학회논문지
    • /
    • 제24권1호
    • /
    • pp.61-69
    • /
    • 2023
  • 최근 수산 자원의 고갈에 따른 육상 양식장에서의 '기르는 어업'에 의한 생산성 향상에 대한 기대가 크게 고조되고 있다. 육상 양식장의 경우, 해상 환경과 달리 환경 및 양성 요소에 대한 제어와 관리가 용이하며, 출하 계획에 따른 생산량 조정이 가능한 이점이 있다. 반면, 자연 환경에서와 달리 어류 성장을 위한 인위적인 관리가 필요하기 때문에 운영에 따른 비용이 크게 증가할 수 있는 단점이 있다. 따라서, 계획된 목표 출하량에 맞추어 효율적으로 양식장을 운영함으로써 이윤 극대화를 추구할 수 있다. 이러한 효율적인 양식장 운영 및 어류 양성을 위해서는 대상 어종에 따른 정확한 성장 예측 모델이 반드시 요구된다. 현재까지 대부분의 성장 예측 모델은 양식장 수집 데이터를 활용하여 통계적 분석 기반의 수치 해석적인 결과들이 주를 이룬다. 본 논문에서는 기존의 통계적 관점에 의한 성장 예측 모델이 가질 수 있는 데이터 확보의 어려움 및 낮은 정확도에 대한 정량적 수치를 제공하기 어려운 단점을 극복하기 위해 확률적 관점에서의 성장 예측 모델을 제시한다. 확률적 접근을 위하여 양성에 가장 중요한 요소인 수온을 기반으로 한 가우시안 프로세스 회귀 방식을 도입하여 모델링을 수행한다. 이를 통해, 특정 시점에서의 성장 예측값에 대한 평균치와 해당 값에 대한 신뢰구간을 동시에 제공함으로써 보다 효율적인 양식장 운영을 위한 참고 수치를 제공할 수 있을 것으로 기대한다.

GCM 공간상세화 방법별 기후변화에 따른 수문영향 평가 - 만경강 유역을 중심으로 - (Assessing Hydrologic Impacts of Climate Change in the Mankyung Watershed with Different GCM Spatial Downscaling Methods)

  • 김동현;장태일;황세운;조재필
    • 한국농공학회논문집
    • /
    • 제61권6호
    • /
    • pp.81-92
    • /
    • 2019
  • The objective of this study is to evaluate hydrologic impacts of climate change according to downscaling methods using the Soil and Water Assessment Tool (SWAT) model at watershed scale. We used the APCC Integrated Modeling Solution (AIMS) for assessing various General Circulation Models (GCMs) and downscaling methods. AIMS provides three downscaling methods: 1) BCSA (Bias-Correction & Stochastic Analogue), 2) Simple Quantile Mapping (SQM), 3) SDQDM (Spatial Disaggregation and Quantile Delta Mapping). To assess future hydrologic responses of climate change, we adopted three GCMs: CESM1-BGC for flood, MIROC-ESM for drought, and HadGEM2-AO for Korea Meteorological Administration (KMA) national standard scenario. Combined nine climate change scenarios were assessed by Expert Team on Climate Change Detection and Indices (ETCCDI). SWAT model was established at the Mankyung watershed and the applicability assessment was completed by performing calibration and validation from 2008 to 2017. Historical reproducibility results from BCSA, SQM, SDQDM of three GCMs show different patterns on annual precipitation, maximum temperature, and four selected ETCCDI. BCSA and SQM showed high historical reproducibility compared with the observed data, however SDQDM was underestimated, possibly due to the uncertainty of future climate data. Future hydrologic responses presented greater variability in SQM and relatively less variability in BCSA and SDQDM. This study implies that reasonable selection of GCMs and downscaling methods considering research objective is important and necessary to minimize uncertainty of climate change scenarios.

베이지안 딥러닝 기법을 이용한 확률적 적설심 예측 모델 개발 (Development of a Stochastic Snow Depth Prediction Model Using a Bayesian Deep Learning Method)

  • 정영준;이상익;이종혁;서병훈;김동수;서예진;최원
    • 한국농공학회논문집
    • /
    • 제64권6호
    • /
    • pp.35-41
    • /
    • 2022
  • Heavy snow damage can be prevented in advance with an appropriate security system. To develop the security system, we developed a model that predicts snow depth after a few hours when the snow depth is observed, and utilized it to calculate a failure probability with various types of greenhouses and observed snow depth data. We compared the Markov chain model and Bayesian long short-term memory models with varying input data. Markov chain model showed the worst performance, and the models that used only past snow depth data outperformed the models that used other weather data with snow depth (temperature, humidity, wind speed). Also, the models that utilized 1-hour past data outperformed the models that utilized 3-hour data and 6-hour data. Finally, the Bayesian LSTM model that uses 1-hour snow depth data was selected to predict snow depth. We compared the selected model and the shifting method, which uses present data as future data without prediction, and the model outperformed the shifting method when predicting data after 11-24 hours.