• 제목/요약/키워드: Temperature rising

검색결과 661건 처리시간 0.027초

하절기 콘크리트의 품질특성 변화에 관한 연구 (A Study on the Quality Fluctuation of Hot Weather Concrete)

  • 김동석;정연식;유재상;김창범;이종열;김영준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.665-668
    • /
    • 2001
  • Generally, according to rising of atmospheric temperature, a consistency of concrete decreases, and a slump property of concrete is changed to be large. Also, in the strength development of concrete, the strength development rate of long-term age(28day) in comparison to strength of early age(7day) and the absolute compressive strength decreases. Accordingly, in this study, experiments about quality evaluation of concrete utilizing Ordinary Portland Cement is carried out. As a result of experiments, there were a conspicuous change in slump of concrete due to temperature increase. In conclusion, the rising of atmospheric temperature was very important factor in affecting the quality fluctuation of hot weather concrete.

  • PDF

Nd : YAG LASER 조사가 치과 임플란트의 물성과 온도 상승에 미치는 영향 (EFFECT OF ND : YAG LASING ON TEMPERATURE RISING AND PROPERTIES OF MATTER OF DENTAL IMPLANTS)

  • 이호용
    • 대한치과보철학회지
    • /
    • 제34권3호
    • /
    • pp.489-500
    • /
    • 1996
  • Pulsed Nd : YAG LASER has been applied to various fields in clinical dentistry including the treatment of peri-implantitis. However, LASER can affect properties of matter of dental implants which are important to maintaining the health of peri-implant tissue and can raise its temperature during lasing. So there have been warings of using LASER to treat peri-implantitis. But, the effects of laser on dental implants itself are not certain yet. So we measured the temperature rising, examined matter of properties by SEM and EDX before and after pulsed Nd : YAG lasing various intensity. 7 TPS implants and 7 HPS implants were used and pulsed Nd : YAG LASER was used in 0.3W, 1.0W, and 2.0W. 1. 2.0W LASER made polished neck portion of HPS implants reach $39.2^{\circ}C$ after 5 seconds lasing. 2. LASER made crater-like defects on plasma sprayed surface and surfaces were melted and divided by fragments after lasing. 3. There was no specific evidence of element change after lasing.

  • PDF

Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment

  • Alimoradzadeh, M.;Akbas, S.D.
    • Structural Engineering and Mechanics
    • /
    • 제81권6호
    • /
    • pp.705-714
    • /
    • 2022
  • The aim of this paper is to investigate nonlinear dynamic responses of functionally graded composite beam resting on the nonlinear viscoelastic foundation subjected to moving mass with temperature rising. The non-linear strain-displacement relationship is considered in the finite strain theory and the governing nonlinear dynamic equation is obtained by using the Hamilton's principle. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then the governing equation is solved by using of multiple time scale method. The influences of temperature rising, material distribution parameter, nonlinear viscoelastic foundation parameters, magnitude and velocity of the moving mass on the nonlinear dynamic responses are investigated. Also, the buckling temperatures of the functionally graded beams based on the finite strain theory are obtained.

온도상승에 따른 탄소섬유시트 보강 콘크리트보의 계면응력 (The Interfacial Stresses in Concrete Beam Strengthened with Carbon Fiber Sheets due to Temperature Rising)

  • 최형석;김성도;정진환
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권6호
    • /
    • pp.109-118
    • /
    • 2008
  • 본 논문은 탄소섬유시트로 하면을 보강한 콘크리트 보에서 온도가 상승함에 따라 서로 다른 선팽창계수를 가지는 콘크리트와 탄소섬유시트 사이에 계면전단응력이 발생함으로 부착강도 평가 시 이를 고려하여야 함을 기술하고 있다. 선형탄성거동을 가정한 계면전단응력의 이론식과 모형 보의 온도변화실험을 통하여 변형률을 측정한 결과를 비교함으로써 이론해의 적용성을 확인하였으며, 이론식으로부터 $30^{\circ}C$의 온도변화가 발생하는 경우 탄소섬유시트 부착계면에서 최대 0.91MPa의 전단응력이 발생되는 것으로 조사되었고 변화량이 $10^{\circ}C$인 경우에서도 에폭시에 의한 부착강도의 10~15%의 응력이 추가적으로 발생하는 것으로 나타났다. 그러므로 탄소섬유시트로 콘크리트 구조물을 보수, 보강하는 경우 부착강도 평가 시 온도의 영향이 고려되어야 하며, 온도변화에 따른 장기간의 거동을 평가하는 노력이 필요한 것으로 판단된다.

수중 고온 단일 기포의 열전달 해석 연구 (A Study on the Heat Transfer Analysis of High-Temperature Single Bubble in Water)

  • 윤석태
    • 한국산업정보학회논문지
    • /
    • 제29권1호
    • /
    • pp.117-123
    • /
    • 2024
  • 수중에서 발생한 기포는 주변 유체의 밀도와 압력 차이에 의해 상승하는 부력을 받는다. 또한 주변 유체와의 점성, 표면장력, 상승 속도 그리고 크기 차이에 따라 기포의 거동, 형상, 열교환 과정 등이 달라진다. 본 연구에서는 원기둥 수조 내 상승하는 고온 단일 기포의 속도 그리고 열전달 해석에 관한 연구를 수행하였다. 이를 위해 이론적 식을 통해 기포의 속도 그리고 온도 등을 계산하여 수치 해석 결과와 비교하기 위한 자료를 설정하였다. 그리고 상용 프로그램으로 수치 해석을 수행하였으며, 격자의 변화에 따른 수치 해석 결과의 안정성을 격자 수렴성 지수 계산을 통해 확인하였다. 수치 해석 결과 단일 기포의 상승 속도와 온도는 최소 격자의 크기가 기포 지름의 1/160이 될 때 수렴성을 보였으며, 온도 감소는 0.05초 이내에 주변 유체와 동일한 수준으로 감소하는 것을 확인하였다.

KSTAR 운전시나리오에 대해 초전도자석 구조물에 발생되는 줄열 및 온도분포 계산 (Calculation of Joule Heat and Temperature Distribution Generated on the Superconduction Magnet Structure for the KSTAR Operation Scenarios)

  • Seungyon Cho;Jeong Woo Sa;Chang Ho Choi;KSTAR Team
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2002년도 학술대회 논문집
    • /
    • pp.56-59
    • /
    • 2002
  • Since the KSTAR magnet structure should be maintained at cryogenic temperature of about 4.5 K, even a small amount of heat might be a major cause of the temperature rising of the superconducting magnet structure. The Joule heating by eddy current induced on the magnet structure during the KSTAR operation was found to be a critical parameter for designing the cooling scheme of the magnet structure as well as defining the requirements of the refrigerator for the cryogenic system. Based on the Joule heating calculation, it was revealed that the bulk temperature rising of the magnet coil structure was less than 1 K. The local maximum temperature especially at the inboard leg of the TF coil structure increase as high as about 21 K for the plasma vertical disruption scenario. For the CS coil structure maximum temperature of 8.4 K was obtained from PF fast discharging scenario.

  • PDF

유한요소법과 몬테카를로법을 이용한 X선 튜브에서 전자빔 충격에 의한 열 발생 해석 (Analysis of Heat Generation Induced by Electron Impact in X-Ray Tube Using FEM and Monte Carlo Method)

  • 김흥배;유태재
    • 한국정밀공학회지
    • /
    • 제32권4호
    • /
    • pp.387-394
    • /
    • 2015
  • We analyze heat generation as well as temperature distribution induced by accelerated electron impact on a target in a closed x-ray tube. For the sake of accuracy, we use Monte carlo analysis. This method gives accurate energy deposit in a medium with additional information such as secondary and backscattered electron as well as their paths. A Tungsten coated layer is divided by small rectangular cell which accumulate energy loss of primary electron beam. The cells and their accumulated energy datum are used for the input of finite element analysis. The Maximum temperature rising and temperature distribution were analyzed by transient heat analysis. Some temperature parameters such as target size and coating thickness were varied to investigate temperature sensitivity. Temperatures were compared each other to find primary variable that affect temperature rising on the x-ray target. The results will be helpful in development highresolution x-ray tube and related industries.

A Model for Predicting the Effect of Increasing Air Temperature on the Net Photosynthetic Rate of Quercus mongolica Stands

  • Ihm, Byung-Sun;Lee, Jeom-Sook;Kim, Jong-Wook;Kim, Joon-Ho
    • Journal of Ecology and Environment
    • /
    • 제30권1호
    • /
    • pp.1-7
    • /
    • 2007
  • A model was developed to predict the effects of rising air temperature on net photosynthetic rate of Quercus mongolica stands at Mt. Paekcheok-san, Kangwon-do in South Korea. The PFD (Photon flux density) and air temperature were determined from weather data from the research site and the Daegwallyeong meteorological station and gas exchange or release responses of each tree component were measured. Using these data, we simulated the effects of increases in mean annual air temperatures above current conditions on annual $CO_2$ budget of Q. mongolica stands. If mean annual air temperature is increased by 0.5, 1.0, 1.5, 2.0, 2.5 or $3.0^{\circ}C$, annual net photosynthetic rate will be increased by 8.8, 12.8, 14.5, 12.6, 9.2 and 1.0 ton $CO_2\;ha^{-1}yr^{-1}$ respectively. Simulations indicate that changes in air temperature will have a major impact on gas exchange and release in Q. mongolica stands, resulting in a net increase in the rate of carbon fixation by standing crops.

넓은 영역의 온도범위를 가지는 급속 온도특성측정시스템 컨트롤러 설계 (Design Controller For Rapidity Temperature Measurement-system)

  • 신광식;정완영
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(5)
    • /
    • pp.33-36
    • /
    • 2001
  • An automatic TCXO frequency-temperature test apparatus was firstly developed by using thermoelectric device may. The developed system swing stably the test temperature range from -40$^{\circ}C$ to +80$^{\circ}C$ for about 1 hour The rising temperature ratio was fairly linear with time in this test temperature range. The temperature could be controlled error in error range of ${\pm}$0.05$^{\circ}C$ in this system. The frequency-Temperature properties of TCXO or the thermoelectric properties of other electric device.

  • PDF

실내에서 식물과 수경시설이 온열환경에 미치는 영향 (The Effect of Plants and Waterscape Facilities on the Thermal Indoor Environment)

  • 정연승;박인환
    • 한국조경학회지
    • /
    • 제27권1호
    • /
    • pp.19-28
    • /
    • 1999
  • This survey is to investigate the effect of plants and waterscape facilities on the thermal indoor environment and to provide basic data for proper plant cultivation to enhance indoor landscape. The survey of the measure of comfort on the indoor environment for the residents of Taegu shows that the measure of comfort on the thermal-environment, which consist of temperature and humidity, has more negative responses than the measure on lighting . are . sound environment, which consists of air freshness, lighting condition and sound environment. The experiments on the effect of the amount of leaves and the distance of plants on the indoor thermal-environment are made. The experimental results illustrate that, as the capacity of a plant becomes greater and the distance from the plant shorter, the falling effect of temperature and the rising effect of humidity on the top of the plant are taken higher than on the side of the plant. When the same amount of leaves is set up, the distance range of the rising effect of humidity becomes wider than that of the falling effect of temperature. The investigation of the effect of waterscape facilities on the indoor thermal-environment shows that temperature and humidity of the space with installed waterscape facilities are lower and higher than without facilities, respectively.

  • PDF