• Title/Summary/Keyword: Temperature measurement

Search Result 4,995, Processing Time 0.035 seconds

Temperature Measurement of Silicon Wafers Using Phase Estimation of Acoustic Wave (음향파의 위상 추정을 이용한 실리콘 웨이퍼의 온도 측정)

  • Joonhyuk Kang;Lee, Seokwon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.11
    • /
    • pp.493-495
    • /
    • 2003
  • Accurate temperature measurement is a key factor to implement the rapid thermal processing(RTP). A temperature estimation method using acoustic wave has been proposed to overcome the inaccuracy and contamination problem of the previous methods. The proposed method, however, may suffer from the offset and low resolution problem since it is implemented in the time domain. This paper presents a temperature estimation method using the phase detection of acoustic wave. Based on the frequency domain approach, the proposed technique increases the resolution of the measured temperature and reduces the effect of noise. We investigate the performance of the proposed method via experiments.

Improvement the Junction Temperature Measurement System Considering the Parasitic Capacitance in LED (LED 기생 커패시턴스를 고려한 접합온도 측정 시스템의 개선)

  • Park, Chong-Yun;Yoo, Jin-Wan
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.187-191
    • /
    • 2009
  • Recently, we have used LEDs to illumination because it has a high luminous efficiency and prolong lifespan. However the light power and lifetime is reduced by junction temperature increment of LED. So it is important to measure the junction temperature accurately. In case of using a electrical method measuring junction temperature of LED. Temperature measurement errors are spontaneously generated because of a parasitic capacitances in LED. In this paper, we proposed a method that reducing LED's parasitic capacitance effects for electrical measurement. It was demonstrated by the experimental result that is more correct than established method.

  • PDF

Experimental Study on the Thermal Characteristics in Ondol Heating Systems (온돌난방주택의 난방방식별 열 특성에 관한 실험연구)

  • 윤정숙
    • Journal of the Korean housing association
    • /
    • v.1 no.1
    • /
    • pp.91-102
    • /
    • 1990
  • The aim of this study is to discover thermal characteristics of Ondol heating systems. The housing subjected was categorized into detached single family houses and apartments, reinforced concrete and brick structures, intermittent and continous heating system, and the space subjected was bedroom. In order to understand the thermal characteristics of each floor heating systems, the vertical distribution of indoor temperature and the distribution of surface temperature on the floor were measured. The vertical distribution of indoor temperature except the measurement point 1 largely showed average temperature distribution, and the temperature of the measurement point 1 in the housing surveyed showed the highest temperature in the house "sample A" because of the radiation heating from the floor of the Ondol room. As the result of the measurement, the thermal characteristics of each heating system were more stable distribution in apartments of R.C structure.structure.

  • PDF

Estimation of Insulated-gate Bipolar Transistor Operating Temperature: Simulation and Experiment

  • Bahun, Ivan;Sunde, Viktor;Jakopovic, Zeljko
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.729-736
    • /
    • 2013
  • Knowledge of a power semiconductor's operating temperature is important in circuit design and converter control. Designing appropriate circuitry that does not affect regular circuit operation during virtual junction temperature measurement at actual operating conditions is a demanding task for engineers. The proposed method enables virtual junction temperature estimation with a dedicated modified gate driver circuit based on real-time measurement of a semiconductor's quasi-threshold voltage. A simulation was conducted before the circuit was designed to verify the concept and to determine the basic properties and potential drawbacks of the proposed method.

Study on Temperature Field Measurement of Fluid using Phophor Particle (Sr,Mg)2SiO4:Eu2+ (인광입자(Sr,Mg)2SiO4:Eu2+를 이용한 액체의 온도장 측정에 관한 연구)

  • Song, Dong Jin;Lee, Hyunchang
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.3
    • /
    • pp.59-65
    • /
    • 2019
  • Phosphor particles ((Sr,Mg)2 SiO4:Eu2+ were suspended in deionized water in quartz cuvette and used for measuring liquid temperature field by using two-color-ratio method. In the temperature range of 23~77℃, it showed the relative error from 2.4% to 4% and the temperature sensitivity of 0.65 %/℃ at 30℃ and 0.95 %/℃ at 77 ℃. This performance is comparable to measurement techniques using thermographic liquid crystal or laser induced fluorescence or other thermographic phosphor particle. Among investigated potential error sources, the particle number density affected the intensity ratio and the temperature, but the effect of laser fluence was not evident.

Electron Tunneling Characteristics of PtSi-nSi Junctions according to Temperature Variations (온도변화에 따른 백금 실리사이드-엔 실리콘 접합의 전자 터널링 특성)

  • 장창덕;이정석;이광우;이용재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.87-91
    • /
    • 1998
  • In this paper, We analyzed the current-voltage characteristics with n-type silicon substrates concentration and temperature variations (Room temperature, 50$^{\circ}C$, 75$^{\circ}C$) in platinum silicide and silicon junction. The electrical parameters of measurement are turn-on voltage, saturation current, ideality factor, barrier height, dynamic resistance in forward bias and reverse breakdown voltage according to variations of junction concentration of substrates and measurement temperature variations. As a result, the forward turn-on voltage, reverse breakdown voltage, barrier height and dynamic resistance were decreased but saturation currents and ideality factor were increased by substrates increased concentration variations in platinum silicide and n-silicon junction. In increased measurement temperature (RT, 50$^{\circ}C$, 75$^{\circ}C$), the extracted electrical parameter values of characteristics were rises by increased temperature variations according to the forward and reverse bias.

  • PDF

Application of Coating Technique for Measurement of Elevated Temperature Fatigue Crack Growth Behavior (고온 피로균열 성장거동 관찰을 위한 코팅기술의 응용)

  • 남승훈;김용일;서창민;김동석
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.60-66
    • /
    • 2002
  • The remote measurement system(RMS) as a new experimental method is limited in its application to crack measurement at elevated temperatures because of the oxide layer on the specimen surface. Since TiAIN and Cr coating layers have a high resistance to oxidation and wear, this paper proposed a TiAIN and Cr coating technique for specimens to facilitate the measurement of crack growth behavior using RMS. To investigate the effects of the coating layer, tension and fatigue tests were carried out at room temperature and at $538^{\circ}C$. The test material was 1Cr-1Mo-0.25V steel which is widely used as a turbine rotor material. From the experimental results, it was found that the mechanical properties of the TiAIN and Cr coated specimens were similar to those of the substrate. Accordingly, the TiAIN and Cr coated layer had hardly any influence on the fatigue crack propagation.

Comparison of Tympanic and Axillary Temperatures (고막체온과 액와체온의 비교 연구 - 성인대상자를 중심으로 -)

  • Yea, Jae-Hee;Jo, Hyun-Sook
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.16 no.2
    • /
    • pp.162-170
    • /
    • 2009
  • Purpose: To verify the usability of tympanic temperature measurement for adults, a comparison of tympanic and axillary temperatures was done. Method: The study was conducted during October 2008, and participants were 110 female nursing students. Axillary temperatures were taken with glass mercury thermometers for 5, 7 and 10 minutes. Tympanic temperatures were taken with Infrared Thermometer IRT 4520 on both ears, twice at a 5-second interval. The data were analyzed using the SPSS 12.0 program. Results: In the 1st measurement, the mean for right tympanic temperatures ($0.06^{\circ}C$) and for left ($0.03^{\circ}C$) were significantly higher than the 2nd. A comparison of mean temperatures for right and left, showed that the mean for the left side on the 1st measurement was significantly higher ($0.01^{\circ}C$) than the right. Also the temperature on left side in the 2nd measurement was higher ($0.04^{\circ}C$) than the right 2nd, but not significantly higher. The mean temperature for right and left tympanic on 1 st and 2nd measurements were significantly higher than axilla for 5 minutes ($0.58^{\circ}C$), for 7 minutes ($0.52^{\circ}C$), and for 10 minutes ($0.43^{\circ}C$). The tympanic temperature was the most closely correlated with the axillary temperature at 10 minutes. Conclusion: Findings indicate that measurement of tympanic temperature is a useful alternative to axillary temperature taken for 10 minutes.

  • PDF

The Development of Temperature Measurement System using Non-Contact Temperature Sensor Array (비접촉식 온도센서 어레이를 활용한 온도 계측시스템 개발)

  • Kim, Sung-Dae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.9
    • /
    • pp.2087-2092
    • /
    • 2015
  • Recently, use of the heat transferring machine and systems has been increasing in various industrial fields. A key technique for constructing such process is basically to measuring temperature directly to objects established on industrial plants. Particularly, a non-contact temperature measurement is very important to realize advanced heat transferring systems. This paper presents a new measurement methodology for temperature by using USN(ubiquitous sensor networks) technique including the microprocessor unit based ZigBee communication systems. This proposed system is made to be applied in monitoring systems for non-contact temperature measurement. We designed firmware based measurement systems whose main function is to save s series of temperature data sets and send it to main monitoring systems.

Study on the Partially Premixed Flames Produced by a Coflow Burner as Temperature Calibration Source (동축류 버너에서 생성된 부분 예혼합 화염을 이용한 화염 온도 측정 검정원 연구)

  • Park, Chul-Woung;Hahn, Jae-Won;Shin, Hyun-Dong
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.1
    • /
    • pp.91-98
    • /
    • 2000
  • We investigated a uniform temperature zone, produced by double flame structure of a co flow CH4/air partially premixed flame, to be used as a temperature calibration source for laser diagnostics. A broadband N2 CARS(coherent anti-Stokes Raman spectroscopy) system with a modeless laser was used for temperature measurement. When the stoichiometric ratio was 1.5, we found the uniform temperature zone in radial direction of the flame of which the averaged temperature was 2110 K with standard deviation 24 K. In the stoichiometric ratio range between 2.0 and 2.5, we found very stable temperature-varying zones in vertical direction at the center of the flame. The size of the zone was approximately 15 mm and it covered a temperature range from 300 K to 1900 K. We also suggest that this zone can be used as a calibration source for 2-D PLIF(planar laser induced flurescence) temperature measurement.

  • PDF