• Title/Summary/Keyword: Temperature dependent characteristics

Search Result 642, Processing Time 0.025 seconds

Effect of RuO$_2$ Thin Film Microstructure on Characteristics of Thin Film Micro-supercapacitor ($RuO_2$박막의 미세 구조가 박막형 마이크로 슈퍼캐패시터의 특성에 미치는 영향)

  • Kim, Han-Ki;Yoon, Young-Soo;Lim, Jae-Hong;Cho, Won-Il;Seong, Tae-Yeon;Shin, Young-Hwa
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.671-678
    • /
    • 2001
  • All solid-state thin film micro supercapacitor, which consists of $RuO_2$/LiPON/$RuO_2$ multi layer structure, was fabricated on Pt/Ti/Si substrate using a $RuO_2$ electrode. Bottom $RuO_2$ electrode was grown by dc reactive sputtering system with increasing $O_2/[Ar+O_2]$ ratio at room temperature, and a LiPON electrolyte film was subsequently deposited on the bottom $RuO_2$ electrode at pure nitrogen ambient by rf reactive sputtering system. Room temperature charge-discharge measurements based on a symmetric $RuO_2$/LiPON/$RuO_2$ structure clearly demonstrates the cyclibility dependence on the microstructure of the $RuO_2$ electrode. Using both glancing angle x-ray diffraction (GXRD) and transmission electron microscopy (TEM) analysis, it was found that the microstructure of the $RuO_2$ electrode was dependent on the oxygen flow ratio. In addition, x- ray photoelectron spectroscopy(XPS) examination shows that the Ru-O binding energy is affected by increasing oxygen flow ratio. Furthermore, TEM and AES depth profile analysis after cycling demonstrates that the interface layer formed by interfacial reaction between LiPON and $RuO_2$ act as a main factor in the degradation of the cyclibility of the thin film micro-supercapacitor.

  • PDF

A new Method of Stiction Reduction for MEMS Structures Using DDMS (DDMS를 이용한 MEMS 구조물의 새로운 점착방지 방법)

  • Kim, Bong-Hwan;Oh, Chang-Hoon;Chun, Kuk-Jin;Oh, Yong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.6
    • /
    • pp.9-16
    • /
    • 2000
  • In order to achieve stiction-free polysilicon surfaces, we have suggested a new class of chemical coating precursors and confirmed their excellent characteristics. The strategy is to adopt dialkyldichlorosilanes (DDS, $R2SiCl_2$) instead of monoalkyltrichlorosilanes (MTS, $RSiCl_3$) such as octadecyltrichlorosilane (OTS) or 1H,1H2H,2H-perfluorodecyltrichlorosilane (FDTS). Dichlorodimethylsilane (DDMS, $(CH_3)2SiCl_2$) in this study is commercially available DDS with two short chains. DDMS in aprotic media spontaneously deposits on the hydrophilic polysilicon surface, which is completely changed to hydrophobic one. When polysilicon surface is exposed to DDMS solution at room temperature, anti-stiction property and hydrophobicity are clearly comparable to FDTS. DDMS is even superior to MTS in reliability and easy handling, which provides high yield. Since interactions among precursor molecules are reduced, conglomeration both in homogeneous solution and on surface can be effectively avoided. Even the cantilevers of 3 mm in length can be protected successfully from the stiction and the final quality of the modified surfaces is much less dependent on temperature. And no difference was found between the processes in ambient environment and in dry box. In addition, DDMS has advantages of remarkably reduced process time and low cost.

  • PDF

Application in Membrane Hybrid System with Acrylic Wastewater Pretreated by $TiO_2$ ($TiO_2$로 전처리한 아크릴 폐수의 Membrane Hybrid System에의 적용)

  • Lee, Kwang-Hyun;Kang, Byung-Chul;Lee, Jong-Baek;Lee, Gang-Choon
    • Membrane Journal
    • /
    • v.19 no.3
    • /
    • pp.183-188
    • /
    • 2009
  • After membrane fouling factors in acrylic wastewater were minimized by pretreatment process accompanied with $TiO_2$, it was utilized in MF/UF/RO process. After composing of ultrafiltration/reverse osmosis or microfiltration/reverseosmosiss module set according to types and kinds of membrane, the separation characteristics were examined with the variation temperature and pressure using pretreated acrylic wastewater by membrane module sets. The permeate of ultrafiltration or microfiltration module was sent to reverse osmosis module. It was found that final permeate flux of reverse osmosis module in module set 2 (MWCO 200,000 UF+RO) was excellent. It was shown that the removal efficiency of TDS, T-N and COD was very low and was not dependent on the variation of temperature and pressure in UF and MF modules. From the above result, the removal efficiency of TDS, T-N and COD was very excellent in RO module. The removal efficiency of turbidity in UF and MF module was very high (> 99% removal efficiency). Final water quality of acrylic wastewater treated by the membrane module set was satisfied with effluent allowances limit and membrane module sets were ascertained to reuse wastewater.

Preparation of Ion Exchange Membranes for Fuel Cell Based on Crosslinked Poly(vinyl alcohol) with Poly(acrylic acid-co-maleic acid)

  • Kim, Dae-Sik;Park, Ho-Bum;Lee, Chang-Hyun;Lee, Young-Moo;Moon, Go-Young;Nam, Sang-Yong;Hwang, Ho-Sang;Yun, Tae-II;Rhim, Ji-Won
    • Macromolecular Research
    • /
    • v.13 no.4
    • /
    • pp.314-320
    • /
    • 2005
  • Crosslinked poly(vinyl alcohol) (PVA) membranes were prepared at various crosslinking temperatures using poly(acrylic acid-co-maleic acid) (PAM) containing different PAM contents. The thermal properties of these PVA/PAM membranes prepared at various reaction temperatures were characterized using differential scanning calorimetry (DSC). The proton conductivity and methanol permeability of PVA/PAM membranes were then investigated as PAM content was varied from 3 to 13 wt%. It was found that the proton and methanol transport were dependent on PAM content in their function both as crosslinking agent and as donor of hydrophilic -COOH groups. Both these properties decreased monotonously with increasing PAM concentration. The proton conductivities of these PVA/PAM membranes were in the range from $10^{-3}\;to\;10^{-2}S/cm$ and the methanol permeabilities from $10^{-7}\;to\;10^{-6}cm^{2}/sec$. In addition, the effect of operating temperature up to $80^{\circ}C$ on ion conductivity was examined for three selected membranes: 7, 9 and 11 wt% PAM membranes. Ion conductivity increased with increasing operating temperature and showed and S/cm at $80^{\circ}C$, respectively. The effects of crosslinking and ionomer group concentration were also examined in terms of water content, ion exchange capacity (IEC), and fixed ion concentration. In addition, the number of water molecules per ionomer site was calculated using both water contents and IEC values. With overall consideration for all the properties measured in this study, $7{\sim}9\;wt%$ PAM membrane prepared at $140^{\circ}C$ exhibited the best performance. These characteristics of PVA/PAM membranes are desirable in applications related to the direct methanol fuel cell (DMFC).

Optimization of Ethanol Extraction Conditions from Glasswort (Salicornia herbacea) Using Response Surface Methodology (반응표면분석법을 이용한 퉁퉁마디 에탄올 추출조건의 최적화)

  • Park, Jeong-Wook;Kim, Hae-Seop;Park, In-Bae;Shin, Gung-Won;Lee, Young-Jae;Jo, Yeong-Cheol
    • Food Science and Preservation
    • /
    • v.16 no.3
    • /
    • pp.376-384
    • /
    • 2009
  • Response surface methodology (RSM) was used to monitor the characteristics of ethanol extracts from glasswort (Salicornia herbacea). A central composite design was used to investigate the effects of the independent variables of sample ratio, extraction temperature, and ethanol concentration on the dependent variables color, sugar, salinity, yield, electron donating ability, and total polyphenol content of extracts. The maximum $^{\circ}Brix$ (8.46) was obtained under specific extraction conditions, with a sample ratio of 7.04 g/100 mL, an extraction temperature of $89.01^{\circ}C$, and an ethanol concentration of 34.29% v/v. At a sample ratio, extraction temperature, and ethanol concentration of 7.00 g/100 mL, $89.15^{\circ}C$, and 34.14% v/v, respectively, the salinity was 7.35%. When the sample ratio, extraction temperature, and ethanol concentration were 5.56 g/100 mL, $68.61^{\circ}C$, and 99.14% v/v, respectively, the maximum electron donating ability was 86.10%. A maximized total polyphenol content of 1,140.15 mg/100 g was found with the following conditions: sample ratio of 8.6 g/100 mL, extraction temperature of $64.19^{\circ}C$, and ethanol concentration of 71.74% v/v. Overall, the optimal ranges of extraction conditions for effective components of glasswort were 3.38.5.33 g/100 mL sample ratio, $55.87-76.96^{\circ}C$, and 25.00.67.31% v/v ethanol.

Effects of Storage Temperature on Physicochemical and Sensory Characteristics of Soybean Sprouts (콩나물의 저장 중 온도변이에 따른 품질변화)

  • Jeon, Seung-Ho;Lee, Se-Hun;Kim, Young-Ju;Oh, Se-Yun;Kim, Kyung-Moon;Chung, Jong-Il;Shim, Sang-In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.3
    • /
    • pp.220-225
    • /
    • 2010
  • Soybean sprouts produced at optimal temperature are placed or displayed for several days in market shelf of relatively cool temperature (ca. $13^{\circ}C$). During this period a number of changes occur including changes in color, smell, taste, nutritional quality, etc. In order to investigate the changes of these factors, soybean sprouts packed in plastic film bag (OPP+PE) were stored at the two different temperature ($3^{\circ}C$ and $13^{\circ}C$). Morphological characters, physicochemical changes and enzymes activity related to visible quality (color) of soybean sprouts were examined. The numbers of fine roots were greater and hypocotyls were longer in soybean sprouts stored at $13^{\circ}C$, although there was no significant difference in diameter, fresh weight and dry weight of hypocotyls between the two storage temperatures. Browning of hypocotyl, as an indicator of a typical deterioration in sprout quality, was highly dependent on the activity of polyphenol oxidase (PPO). Considering the low level of soluble protein in hypocotyls, the relatively higher activity of PPO suggested a critical role of PPO in stored soybean sprouts. PPO activity of sprouts stored at $13^{\circ}C$ was 2-fold higher than that of sprouts stored at $3^{\circ}C$ after 4 days. In sprouts stored at $13^{\circ}C$, the PPO activity was increased from day 0 until 6 days and since then, it was not detected. Crude protein content was increased to 30.9~35.4% based on dry weight with extended storage period. The change in crude protein was greater in sprouts stored at high temperature ($13^{\circ}C$). Total free amino acid content was increased in both temperatures. However, the changing rate of free amino acid was greater in sprouts stored at $13^{\circ}C$.

Physicochemical Characteristics of Fe3O4 Magnetic Nanocomposites Based on Poly(N-isopropylacrylamide) for Anti-cancer Drug Delivery

  • Davaran, Soodabeh;Alimirzalu, Samira;Nejati-Koshki, Kazem;Nasrabadi, Hamid Tayefi;Akbarzadeh, Abolfazl;Khandaghi, Amir Ahmad;Abbasian, Mojtaba;Alimohammadi, Somayeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.49-54
    • /
    • 2014
  • Background: Hydrogels are a class of polymers that can absorb water or biological fluids and swell to several times their dry volume, dependent on changes in the external environment. In recent years, hydrogels and hydrogel nanocomposites have found a variety of biomedical applications, including drug delivery and cancer treatment. The incorporation of nanoparticulates into a hydrogel matrix can result in unique material characteristics such as enhanced mechanical properties, swelling response, and capability of remote controlled actuation. Materials and Methods: In this work, synthesis of hydrogel nanocomposites containing magnetic nanoparticles are studied. At first, magnetic nanoparticles ($Fe_3O_4$) with an average size 10 nm were prepared. At second approach, thermo and pH-sensitive poly (N-isopropylacrylamide -co-methacrylic acid-co-vinyl pyrrolidone) (NIPAAm-MAA-VP) were prepared. Swelling behavior of co-polymer was studied in buffer solutions with different pH values (pH=5.8, pH=7.4) at $37^{\circ}C$. Magnetic iron oxide nanoparticles ($Fe_3O_4$) and doxorubicin were incorporated into copolymer and drug loading was studied. The release of drug, carried out at different pH and temperatures. Finally, chemical composition, magnetic properties and morphology of doxorubicin-loaded magnetic hydrogel nanocomposites were analyzed by FT- IR, vibrating sample magnetometry (VSM), scanning electron microscopy (SEM). Results: The results indicated that drug loading efficiency was increased by increasing the drug ratio to polymer. Doxorubicin was released more at $40^{\circ}C$ and in acidic pH compared to that $37^{\circ}C$ and basic pH. Conclusions: This study suggested that the poly (NIPAAm-MAA-VP) magnetic hydrogel nanocomposite could be an effective carrier for targeting drug delivery systems of anti-cancer drugs due to its temperature sensitive properties.

Characteristics of Thermoluminescence and Electron Spin Resonance and Organoleptic Quality of Irradiated Raisin and Dried Banana During Storage (건포도와 건바나나의 감마선 조사와 저장기간에 따른 열발광 및 전자스핀공명 특성과 관능적 품질)

  • Jo, Deok-Jo;Kwon, Joong-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.4
    • /
    • pp.609-614
    • /
    • 2002
  • The characteristics of thermoluminescence (TL) and electron spin resonance (ESR) and organoleptic qualities of gamma-irradiated raisin and dried banana were investigated during storage at 4$^{\circ}C$ for 6 months. The minerals separated from non-irradiated raisins showed TL glow curve (TL$_1$) with very low intensity around 200~30$0^{\circ}C$, while the irradiated samples at 1 kGy or more showed glow curves with higher intensity around 18$0^{\circ}C$, with linear increase by irradiation dose ($R^2$=0.9684), which made it possible to identify irradiated samples during 6 months. Moreover, TL ratios (TL$_1$/TL$_2$) through the reirradiation step at 1 kGy enhanced confidence in the identification of irradiated raisins. The ESR signals of multicomponent lines resulted from crystalline sugar radicals were shown in irradiated banana, identifying irradiated samples. The ESR signal intensity was dependent on irradiation doses ($R^2$=0.8977) and the signals were stable enough to be detected by 6th month after storage. Considering tile marketability of irradiated dried fruits during 6 months at low temperature TL and ESR analyses were shown suitable for the identification of irradiated raisins and dried banana, respectively.

Herbicidal Response and Germination Characteristics of Green kyllinga(Kyllinga brevifolia var. leiolepsis H.) Propagules (파대가리(Kyllinga brevifolia var. leiolepsis H.) 번식기관의 발아특성과 제초제에 대한 반응)

  • Kim, J.S.;Park, E.Y.;Choi, J.S.;Choi, S.H.;Cho, K.Y.
    • Korean Journal of Weed Science
    • /
    • v.16 no.4
    • /
    • pp.309-316
    • /
    • 1996
  • In this study, germination characteristics and herbicidal response of green kyllinga(Kyllinga brevifolia var. leiolepsis H.) were investigated. The storage method desirable for a rapid dormancy release was to keep the seed under low temp. and wetting condition for one to two months, or high temp($40^{\circ}C$) and drying condition for three months. The dormancy of rhizome was hardly observed. The optimum temperature for germination of seed and rhizome was around $30^{\circ}C$ and 16-$20^{\circ}C$, repectively. The germination of dormancy-breaked seed was completely dependent on light. Shoot emergence ratio(%) was decreased with increase of planting depth ; for example, only 18% of rhizome segments planted in the depth of 4cm under soil surface emerged above soil surface. Flooding at earlier growth stage resulted in significant decrease in shoot emergence as well as in dry weight. The germinablity of rhizome was almost lost as a decreased in fresh weight reached to 50%. Usually, green kyllinga was sensitive to herbicides such as bentazone, bensulfuron and benfuresate etc. which were known to be effective in Cyperaceae weeds, indicating that green kyllinga can be used as a representative plant in the screening of herbicides for Cyperus weeds.

  • PDF

Storage container-dependent chemical and microbiological characteristics during kimchi storage (저장용기에 따른 김치 저장 중의 화학적, 미생물학적 특성)

  • Kim, Seon-Gyu;Han, Min-Hui;Hwang, Jong-Hyun;Moon, Gi-Seong
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.304-309
    • /
    • 2020
  • Different types of storage containers, such as polypropylene (PP), stainless steel (STS), and ceramic were used for kimchi storage at 0℃ in a refrigerator, and the characteristics were compared for 32 days. The pH of kimchi samples in PP and STS containers reached 4.59 and 4.53, respectively at day 16, while a pH of 4.92 could be observed in ceramic containers. This trend persisted until day 32. Titratable acidities of the PP and STS container contents reached 0.83 and 0.82%, respectively, on day 16, while it reached 0.73% in the case of the ceramic container contents. The viable cell counts of lactic acid bacteria in kimchi samples in PP, STS, and ceramic containers fluctuated and finally reached 4.87, 5.44, and 5.35 Log CFU/g, respectively. Weissella koreensis occupied a large portion of the kimchi sample of the ceramic container on day 20 based on the metagenomic analysis. Taken together, ceramic container might be desirable for the storage of kimchi in low temperature refrigerators.