• 제목/요약/키워드: Temperature controlling effect

검색결과 277건 처리시간 0.025초

Mo첨가 열연강판의 반복 열처리 제어압연에 관한 연구 (A Study on Repeat Heat Treating and Controlled Rolling of Mo-alloyed Plate Steels)

  • 이정훈;홍승찬;이경섭
    • 한국재료학회지
    • /
    • 제9권7호
    • /
    • pp.740-747
    • /
    • 1999
  • 결정립 미세화는 강도와 인성을 동시에 향상시킬 수 있는 유일한 방법이다. 제어압연과 가속냉각은 공정 중에 재결정과 결정립 조대화 거동을 조절함으로써 기계적 성질을 향상시키는 효과적인 방법으로 알려져 있으며, 반복열처리에 의한 반복상변태는 결정립 미세화 방법 중의 하나이다. 본 연구에서는 제어압연과 반복열처리를 복합 적용하여 그 효과를 관찰하였다. Mo 첨가효과와 공정변수의 효과를 관찰하기 위해 Mo이 첨가된 저탄소강 시편을 준비하여 Gleeble로 가공열처리 모의실험을 하였다. Mo첨가는 결정립 조대화 온도를 상승시키고, 오스테나이트 재결정을 억제하는 효과를 나타내었다. 오스테나이트 결정립 미세화에 가장 효과적인 공정조건은 반복 열처리 제어압연을 두번 실시하는 것이고, 첫번째보다 두번째 압연율을 더 크게 하는 것이었다

  • PDF

유기성 폐기물의 이동용 퇴비화 장치개발에 관한 연구 (The Mobile Composting Device Development of Organic Wastes)

  • 신현곤
    • 유기물자원화
    • /
    • 제21권2호
    • /
    • pp.56-62
    • /
    • 2013
  • 유기성 폐기물은 더 이상 처리대상이 아닌 자원이며 이러한 자원화 방법 중의 하나인 퇴비화는 자원의 재활용적인 측면에서 가장 친환경적인 방법이라 할 수 있다. 퇴비화는 그 방법에 상관없이 발효공정과 숙성공정이라는 핵심적인 공정 또는 과정을 거치게 된다. 본 연구에서는 유기성 폐기물을 퇴비화 처리하는 핵심장치인 기존 발효 및 숙성공정의 문제점을 파악하고 이러한 문제점을 해결하기 위한 이동용 퇴비화 장치 개발에 관한 연구가 수행되었다. 실험에 사용된 반응용기는 회전되므로 교반 도중 이물질 등에 의해 중지되는 일이 없고, 혼합이 완벽하게 일어난다. 그리고 공기량을 조절함으로써 반응용기 내부의 온도를 균일하게 유지시킬 수 있으므로 미생물을 이용한 발효 및 숙성이 용이하다. 또한, 기존의 발효장치에 비해 경제성이 있으며 인적, 물적 관리비가 절감되고 유기성 폐기물을 이용한 퇴비제품을 대량 생산할 수 있다. 특히, 공간을 적게 차지하면서도 유기성 폐기물이 공기와 접촉하는 면적을 증대시킬 수 있게 됨과 더불어, 이동가능하게 된 퇴비화장치를 제공하는 효과가 있다.

Effect of the recrystallization of ice on the freeze concentration process of milk in the lab-scale operation

  • Park, Sung-Hee;Kim, Soo-Hun;Hong, Guen-Pyo;Kwak, Hae-Soo;Min, Sang-Gi
    • 한국축산식품학회:학술대회논문집
    • /
    • 한국축산식품학회 2005년도 정기총회 및 제35차 춘계 학술 발표대회
    • /
    • pp.290-296
    • /
    • 2005
  • This study was carried out to develop the efficient freeze concentration process of milk through controlling the recrystallisation phenomena of ice. Freeze-concentration was progressed with multi-stage freeze concentrator and there was artificial temperature control to induce recrystallisation phenomena. In each stage of freeze concentration process, the regular recrystallisation time was fixed as 1, 2, 4 and 8 hr to compare the solute increment, yield, brix and ice-crystal size among experimental conditions. Higher concentration as total solids was observed due to the elapse of recrystallisation time, and the maximum total solids in final products: 32.67% was obtained at the ripening time of 8 hr in two-stage process. This result was excessively high concentration comparing to the existing researches and presented the possibilities of milk freeze concentration in the dairy industry, The results of brix and ice-crystal size showed the direct correlation with the recrystallisation time that meant the increased processing time showed the increment of brix and ice-crystal size. Obtained results were numerically modelled to predict the progress of concentration in the industrial process and all of them had fairly high R2 of determination. Therefore, we regarded that these numerical models could be utilized for the development of efficient technology in industrial freeze concentration process.

  • PDF

Cyclic Voltammetry를 이용한 CuInSe2 박막의 전기화학적 전착 연구 (Cyclic Voltammetry Study on Electrodeposition of CuInSe2 Thin Films)

  • 홍순현;이현주;김양도
    • 한국재료학회지
    • /
    • 제23권11호
    • /
    • pp.638-642
    • /
    • 2013
  • Chalcopyrite $CuInSe_2$(CIS) is considered to be an effective light-absorbing material for thin film photovoltaic solar cells. CIS thin films have been electrodeposited onto Mo coated and ITO glass substrates in potentiostatic mode at room temperature. The deposition mechanism of CIS thin films has been studied using the cyclic voltammetry (CV) technique. A cyclic voltammetric study was performed in unitary Cu, In, and Se systems, binary Cu-Se and In-Se systems, and a ternary Cu-In-Se system. The reduction peaks of the ITO substrate were examined in separate $Cu^{2+}$, $In^{3+}$, and $Se^{4+}$ solutions. Electrodeposition experiments were conducted with varying deposition potentials and electrolyte bath conditions. The morphological and compositional properties of the CIS thin films were examined by field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). The surface morphology of as-deposited CIS films exhibits spherical and large-sized clusters. The deposition potential has a significant effect on the film morphology and/or grain size, such that the structure tended to grow according to the increase of the deposition potential. A CIS layer deposited at -0.6 V nearly approached the stoichiometric ratio of $CuIn_{0.8}Se_{1.8}$. The growth potential plays an important role in controlling the stoichiometry of CIS films.

LNG선용 INVAR(Fe-36%Ni)강 Lap 이음부의 피로강도와 허용응력에 관한 연구 (A Study on the Fatigue Strength and Allowable Stress of INVAR(Fe-36% Ni) Steel Lap Joint Applied to Cargo Containment of LNG Carrier)

  • 한명수;한종만;한용섭
    • Journal of Welding and Joining
    • /
    • 제12권1호
    • /
    • pp.102-115
    • /
    • 1994
  • This paper is to evaluate the fatigue strength of lap joints of materials applied to LNG carrier cargo containment of GAZ-TRANSPORT(GT) type, which was welded by manual and automatic TIG welding process. The thicknesses of lapped members were 1.5mm/1.5mm or 1.5mm/0.7mm in Invar to Invar joint, and 1.5mm/8.0mm in Invar to stainless steel joint, respectively. These lap joints were mainly applied to the membrance fabrication of GT-LNG carrier. Fatigue tests of Invar/Inar lap joints were conducted under the stress ratio R=0 at room temperature. The effect of mean stress and cumulative fatigue damage on the allowable stress of Invar lap joint was evaluated on the basis of test results. Fatigue test was also conducted on Inver/Stainless steel lap joints welded by automatic TIG process without filler metals. The fatigue test of the joint was carried out under the same conditions as those of Invar/invar lap joints. The fatigue strength of the joint welded without filler metal was comparable to those welded with filler metal quoted from reference. The fatigue strength of Invar/stainless steel lap joint was only dependent on the lap throat thickness, and not on the welding process. Based on test results, the applicability of TIG welding process without filler metal in Invar/stainless steel lap joint was reviewed by controlling welding variables to assure the valid throat thickness of lap joints.

  • PDF

설폰화된 폴리설폰/PPSQ 유-무기 복합 전해질막의 수소이온 전도도 및 메탄올 투과 특성 (Proton Conductivity and Methanol Permeability of Sulfonated Polysulfone/PPSQ Composite Polymer Electrolyte Membrane)

  • 권정돈;이창진;강영구
    • 전기화학회지
    • /
    • 제7권2호
    • /
    • pp.89-93
    • /
    • 2004
  • 설폰화된 폴리설폰 (sulfonated polysulfone, SPSF)과 Poly(phenylmethyl silsequioxane) (PPSQ)의 유무기 복합 전해 질막을 제조하여 이온전도도와 메탄을 투과 특성을 조사하였다 클로로트리메틸실란과 클로로설폰산의 반응 몰비와 반응시간를 변화시켜 설폰화도가 $37\~75\%$인 SPSF를 합성하였다. SPSF/PPSQ복합 전해막은 SPSF와 PPSQ를 DMF에 용해하여 캐스팅하는 방법으로 제조하였다 이 복합 전해질막의 수소 이온 전도도는 상온에서 $2.8\times10^{-3}\~4.9\times10^{-2}S/cm$이었으며 설폰화도가 증가할수록 전도도는 증가하였다. 제조된 설폰화된 폴리설폰 복합 전해질막의 메탄을 투과도는 이온전도도와 설폰화도에 비례하여 증가하였으며, PPSQ의 함량이 커질수록 메탄을 투과도가 비례적으로 감소하는 것을 확인할 수 있었다. 약 $5wt\%$ PPSO론 포함한 복합 전해질막의 이온전도도 및 메탄을 투과도는 SPSF에 비교하여 거의 동일하지만 함수율을 크게 감소시키는데 효과적이었다.

ZnO 바리스터형 가스 센서의 감도 향상에 관한 연구 (A Study on the Improvement of Sensing Ability of ZnO Varistor-type Gas Sensors)

  • 한세원;조한구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.271-274
    • /
    • 2000
  • Gas sensor materials capable of detecting hydrogen gases (H$_2$) or nitrogen oxides (NO$\_$x/, primarily NO and NO$_2$) with high sensitivity have attracted much interest in conjunction with the growing concern to the protection of global environments. Beside conventional sensor materials, such as semiconductors., conducting polymers and solid electrolytes, the potential of sensor materials with a new method for detecting hydrogen gases or nitrogen oxides gas has also been tested. The breakdown voltage of porous varistors shifted to a low electric field upon exposure to H$_2$ gas, whereas it shifted to a reverse direction in an atmosphere containing oxidizing gases such as O$_3$ and NO$_2$ in the temperature range of 300 to 600$^{\circ}C$. Furthermore, it was found that the magnitude of the breakdown voltage shift, i. e. the magnitude of sensitivity, was well correlated with gas concentration, and that the H$_2$ sensitivity was improved by controlling the composition of the Bi$_2$O$_3$ rich grain boundary phase. However, NO$\_$x/ sensing properties of porous varistors have not been studies in detail. The objective of the present study is to investigate the effect of the composition of the Bi$_2$O$_3$ rich grain boundary phase and other additive such as A1$_2$O$_3$ on the hydrogen gases (H$_2$) sensing properties of porous ZnO based varistors.

  • PDF

화학환원법을 이용한 은 코팅 구리 분말 제조 시 환원제의 영향 및 전기비저항 특성 (Effect of Reductants and their Properties of Electric Resistivity on the Preparation of Ag coated Cu Powders by Chemical Reduction Method)

  • 안종관;윤치호;김동진;조성욱;박제신
    • 대한금속재료학회지
    • /
    • 제48권12호
    • /
    • pp.1097-1102
    • /
    • 2010
  • Silver coated copper powders were prepared by a chemical reduction method with controlling the deposition process variables such as the feeding rate of the silver ionic solution and concentration of the reductants at room temperature. The characteristics of the products were evaluated by scanning electron microscope (SEM), X-ray diffractometer (XRD), atomic absorption spectrophotometer (AA) and a 4 probe resistivity measurement system. The optimum condition of the preparation of Ag coated Cu powders was at 0.05 M of potassium sodium tartrate and 2 ml/min of the feeding rate of the silver ionic solution. Our method successfully produced dense, uniform, and well-dispersed Ag coated Cu powder of $2{\sim}2.5{\mu}m$ witha silver layer of 100~200 nm. Additionally, we found that thespecific resistivity of the 30 wt.% Ag coated Cu powder was similar to that of pure silver, so that the composite powder could be used as an alternative electromagnetic shielding material for silver.

The Effect of Plasma Gas Composition on the Nanostructures and Optical Properties of TiO2 Films Prepared by Helicon-PECVD

  • Li, D.;Dai, S.;Goullet, A.;Granier, A.
    • Nano
    • /
    • 제13권10호
    • /
    • pp.1850124.1-1850124.12
    • /
    • 2018
  • $TiO_2$ films were deposited from oxygen/titanium tetraisopropoxide (TTIP) plasmas at low temperature by Helicon-PECVD at floating potential ($V_f$) or substrate self-bias of -50 V. The influence of titanium precursor partial pressure on the morphology, nanostructure and optical properties was investigated. Low titanium partial pressure ([TTIP] < 0.013 Pa) was applied by controlling the TTIP flow rate which is introduced by its own vapor pressure, whereas higher titanium partial pressure was formed through increasing the flow rate by using a carrier gas (CG). Then the precursor partial pressures [TTIP+CG] = 0:027 Pa and 0.093 Pa were obtained. At $V_f$, all the films exhibit a columnar structure, but the degree of inhomogeneity is decreased with the precursor partial pressure. Phase transformation from anatase ([TTIP] < 0.013 Pa) to amorphous ([TTIP+CG] = 0:093 Pa) has been evidenced since the $O^+_2$ ion to neutral flux ratio in the plasma was decreased and more carbon contained in the film. However, in the case of -50 V, the related growth rate for different precursor partial pressures is slightly (~15%) decreased. The columnar morphology at [TTIP] < 0.013 Pa has been changed into a granular structure, but still homogeneous columns are observed for [TTIP+CG] = 0:027 Pa and 0.093 Pa. Rutile phase has been generated at [TTIP] < 0:013 Pa. Ellipsometry measurements were performed on the films deposited at -50 V; results show that the precursor addition from low to high levels leads to a decrease in refractive index.

원자층 증착방법에 의한 Al2O3 박막의 OLED Thin Film Encapsulation에 관한 연구 (Study on the OLED Thin Film Encapsulation of the Al2O3 Thin Layer Formed by Atomic Layer Deposition Method)

  • 김기락;조의식;권상직
    • 반도체디스플레이기술학회지
    • /
    • 제21권1호
    • /
    • pp.67-70
    • /
    • 2022
  • In order to prevent water vapor and oxygen permeation in the organic light emitting diodes (OLED), Al2O3 thin-film encapsulation (TFE) technology were investigated. Atomic layer deposition (ALD) method was used for making the Al2O3 TFE layer because it has superior barrier performance with advantages of excellent uniformity over large scales at relatively low deposition temperatures. In this study, the thickness of the Al2O3 layer was varied by controlling the numbers of the unit pulse cycle including Tri Methyl Aluminum(Al(CH3)3) injection, Ar purge, and H2O injection. In this case, several process parameters such as injection pulse times, Ar flow rate, precursor temperature, and substrate temperatures were fixed for analysis of the effect only on the thickness of the Al2O3 layer. As results, at least the thickness of 39 nm was required in order to obtain the minimum WVTR of 9.04 mg/m2day per one Al2O3 layer and a good transmittance of 90.94 % at 550 nm wavelength.