A Study on Repeat Heat Treating and Controlled Rolling of Mo-alloyed Plate Steels

Mo첨가 열연강판의 반복 열처리 제어압연에 관한 연구

  • 이정훈 (한양대학교 공과대학 금속공학과) ;
  • 홍승찬 (한양대학교 공과대학 금속공학과) ;
  • 이경섭 (한양대학교 공과대학 금속공학과)
  • Published : 1999.07.01

Abstract

Grain refinement is the only strengthening mechanism that improves both strength and toughness. Controlled rolling and accelerated cooling techniques have been known to be effective method to improve the mechanical properties by controlling the recrystallization and/or grain coarsening during processing. Repeat phase transformation $(\gamma/\alpha)$ by repeat heat treating is another way of grain refinement. In this study, a combined effect of controlled rolling and repeat heat treating was investigated. To study the effects of Mo addition and process parameters, Mo alloyed low carbon steels were prepared and thermomechanical controlled processes were simulated in the Gleeble system. The Mo addition resulted in an increasement of the grain coarsening temperature and suppress austenite recrystallization. The optimum condition for the refinement of austenite was obtained when the controlled rolling was performed twice with the same heat treatment condition, and reduction ratio of second pass was higher than that of first pass.

결정립 미세화는 강도와 인성을 동시에 향상시킬 수 있는 유일한 방법이다. 제어압연과 가속냉각은 공정 중에 재결정과 결정립 조대화 거동을 조절함으로써 기계적 성질을 향상시키는 효과적인 방법으로 알려져 있으며, 반복열처리에 의한 반복상변태는 결정립 미세화 방법 중의 하나이다. 본 연구에서는 제어압연과 반복열처리를 복합 적용하여 그 효과를 관찰하였다. Mo 첨가효과와 공정변수의 효과를 관찰하기 위해 Mo이 첨가된 저탄소강 시편을 준비하여 Gleeble로 가공열처리 모의실험을 하였다. Mo첨가는 결정립 조대화 온도를 상승시키고, 오스테나이트 재결정을 억제하는 효과를 나타내었다. 오스테나이트 결정립 미세화에 가장 효과적인 공정조건은 반복 열처리 제어압연을 두번 실시하는 것이고, 첫번째보다 두번째 압연율을 더 크게 하는 것이었다

Keywords

References

  1. Warrendale, PA, Metallurgical Society of AIME v.155 Fundamentals of Microalloying Forging Steels S.S. Hansen
  2. JISI v.205 K.J. Irvine;F.B. Pickering;T. Gladman
  3. JISI v.206 H. Nordberg;B. Aronsson
  4. Trans. Met. Soc. of AIME v.224 R.P. Smith
  5. Proc.Roy.Soc. v.294 T. Gladman
  6. Microalloying 75-History and Theory v.115 M. Fukuda;T. Hauchimoto;K. Kunishige
  7. Principles of Heat Treatment of Steels G. Krauss
  8. 대한금속학회지 v.36 no.8 이정훈;안병규;이경섭
  9. Metall. Trans v.12A L.J. Cuddy
  10. Physical Metallurgy of Direct-Quenched Steels v.213 Tadeusz Siwecki;Stanislaw Zajac;Bertil Ahlblom
  11. Physical Metallurgy Direct-Quenched Steels v.279 M.A. Hansen;R.K. Weiss;S.W. Thompson
  12. HSLA Steels v.155 Lu Wenzeng;Zhang Weidong
  13. Fundamentals of physical metal-lurgy v.328 J.D. Verhoeven
  14. HSLA Steels. Technology and Applications v.593 I. Kozasu
  15. Thermomechanical Proceesing of Microalloyed Austenite v.129 L.J. Cuddy;A.J. DeArdo(ed.)(et. al.)
  16. Phase Transformations in Ferrous Alloys v.341 G.R. Speich;L.J. Cuddy;C.R. Gordon;A.J. DeArdo;A. Marder(ed.);J. Goldstein(ed.)
  17. Bull. Kor. Inst. Met. & Mater v.9 B.K. Ahn;K.S. Lee
  18. Bull. Kor. Inst. Met. & Mater v.10 W.Y. Joo
  19. Proc. of the tenth conference on mechanical behaviors of materials Ansan v.11-12 T.S. Byun
  20. Scripta Materialia v.38 F. M. Haggag;T.S. Byun;J.H. Hong;P.Q. Miraglia
  21. Journal of nuclear materials v.151 no.187 T.S. Byun;J.W. Kim;J.H. Hong
  22. J of the Korean Inst. of Met. & Meter. v.35 no.12 J.H. Lee;D.I. Kwon