• Title/Summary/Keyword: Temperature condition

Search Result 11,268, Processing Time 0.051 seconds

A Study on the Evaluation of the Loss factor and Young's Modulus of Damping Materials on Temperature Condition (온도 조건에 따른 제진재의 손실계수 및 탄성계수 측정)

  • Lee, Chang-Myung;Ju, Ho-Min;Lee, Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1192-1196
    • /
    • 2001
  • Damping materials show variant characteristics depend on frequency or temperature condition. Therefore, we need to measure damping material characteristics called a loss factor or a young's modulus varying frequency or temperature condition. In this article, measuring procedure and method has been introduced for damping material using a sticking damping material with a thin steel beam. And it shows a temperature effect to damping materials.

  • PDF

The Effect on Cabinet Deformation by Bead of Inner Case (가정용 냉장고의 냉동실 내벽의 비드가 케비넷 변형에 미치는 영향)

  • Cho, J.R.;Zhai, J.G.;Shin, M.G.;Kim, J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.427-428
    • /
    • 2009
  • In the manufacture process of refrigerator cabinet, polyurethane(PU) liquid firstly is injected between outer plate and inner case in high temperature about $40^{\circ}C$, and PU foam is generated and solidified to the room temperature. There will be great residual stress in the PU foam, especially at the corners after the whole refrigerator is completely assembled. The stress condition will become more complicated under operating condition because of the large temperature difference between the freezing room and outer plate. And also, there are great differences of properties for plastic and steel which would cause different deformation under temperature gradient. The steel outer plate would expand compared to the PU foam or ABS material under operation condition, which induces a thermally bowing deformation in the refrigerator cabinet. The objective of this paper is to design an optimum bead structure or to use reinforcement in the refrigerator except for improving material properties in order to decrease the deformation.

  • PDF

Diagnostic Technique for Mold Transformer Windings using Thermal Image (열화상을 이용한 몰드변압기 권선표면 진단)

  • Lim, Y.B.;Jung, J.W.;Jung, J.S.;Ko, W.S.
    • Proceedings of the KIEE Conference
    • /
    • 2005.11c
    • /
    • pp.107-109
    • /
    • 2005
  • Temperature distribution measured to estimate condition of an electrical apparatus is an absolute reference for the apparatus conditions and the difference between the reference temperature and the current one. Because a passive thermography without the external thermal stimulation shows the difference in surface temperature between the object and back ground, the results can apply only to the estimation or the monitoring for the condition of terminal loose and the overload pertaining to the rise in temperature. However, a thermal flow in the active thermography is differently generated by the structure and condition of the surface and subsurface. This paper presents the nondestructive testing using the behavior and deals with the results by heat injection and cooling to the apparatus. The buried discontinuity of subsurface could be detected by these techniques.

  • PDF

A Technical Trend on On-Line Condition Monitoring and Diagnostics of Power Equipments (배전설비의 온라인 모니터링과 진단 기술 동향)

  • Lim, Wan-Soo;Lee, Tae-Woo;Yeo, Woon-Cheol;Lee, Sung-Gil;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1974-1975
    • /
    • 2007
  • Continuous temperature monitoring and event recording provides information on the energized equipment's response to normal and emergency conditions. On-line temperature monitoring helps to coordinate equipment specifications and ratings, determine the real limits of the monitored equipment and optimize facility operations. Using wireless technique eliminates any need for special cables and wires with lower installation costs if compared to other types of online condition monitoring equipment. In addition, wireless temperature monitoring works well under difficult conditions in strategically important locations. Wireless technology for on-line condition monitoring of energized equipment is applicable both as standalone system and with an interface with power quality monitoring system. The paper presents the results of wireless temperature monitoring of switchgear at a power plant over a two-year period.

  • PDF

Coal pyrolysis behaviors at supercritical CO2 conditions

  • Hakduck Kim;Jeongmin Choi;Heechang Lim;Juhun Song
    • Advances in Energy Research
    • /
    • v.8 no.4
    • /
    • pp.265-273
    • /
    • 2022
  • In this study, a product gas yield and carbon conversion were measured during the coal pyrolysis. The pyrolysis process occurred under two different atmospheres such as subcritical (45 bar, 10℃) and supercritical CO2 condition (80 bar, 35℃). Under the same pressure (80 bar), the atmosphere temperature increased from 35℃ to 45℃ to further examine temperature effect on the pyrolysis at supercritical CO2 condition. For all three cases, a power input supplied to heating wire placed below coal bed was controlled to make coal bed temperature constant. The phase change of CO2 atmosphere and subsequent pyrolysis behaviors of coal bed were observed using high-resolution camcorder. The pressure and temperature in the reactor were controlled by a CO2 pump and heater. Then, the coal bed was heated by wire heater to proceed the pyrolysis under supercritical CO2 condition.

Effect of Bonding Condition on High Temperature Mechanical Properties of TLP Bonded Joints of FE-35Ni-26Cr Alloy (Fe-35Ni-26Cr 주강 액상확산접합부의 고온기계적 특성에 미치는 접합조건의 영향)

  • 김대업
    • Journal of Welding and Joining
    • /
    • v.18 no.4
    • /
    • pp.96-103
    • /
    • 2000
  • This study investigated the effects of bonding temperature and bonding atmosphere on high temperature mechanical properties of transient liquid phase(TLP) bonded joints of heat resistant alloy using MBF-50 insert metal. Specimens were bonded at 1,423~1,468K for 600s. Microconstituents of {TEX}$Cr_{7}(C,B)_{3}${/TEX}were formed in the bonded region when the bonding temperature was low. The amount of microcostituents in the bonded layer decreased with increasing the bonding temperature, and the microconstituents in the bonded layer disappeared at the bonding temperature above 1,468K. The tensile strength of the joints at elevated temperatures increased with the increase the bonding temperature and was the same level as one of the base metal in the bonding temperature over 1,453K. Microstructure and alloying element distributions of the bonded region bonded in Ar and $N_2$atmosphere were similar to those of the bonded in vacuum. The creep rupture strength and rupture lives of joints were almost identical to those of base metal.

  • PDF

A Study on the Characteristics of Temperature Distribution according to Material and Position of Filter in a Diesel Particulate Filter (필터의 재질 및 위치에 따른 DPF 내부의 온도 분포 특성에 관한 연구)

  • Kim, Gyu-Sung;Park, Sung-Cheon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.903-909
    • /
    • 2012
  • This study analyzed the temperature distribution in DPF with five partitioned electric heaters. The temperature distribution in DPF is an important design factor for regeneration and durability of filter. The design Factors that influence the temperature distribution in DPF there are several. In this study, the characteristics of temperature distribution in DPF were analyzed according to the following changes. First, the thermal conductivity of the filter was analyzed about effect on the durability of the filter. Second, the length from exhaust manifold to inlet of DPF was analyzed about effect on the temperature distribution in DPF. The boundary conditions of analysis has been verified with comparison to the results of existing experimental study and the numerical analysis. Based on the identified boundary condition, on assuming the condition of the actual driving, the temperature distribution in DPF was analyzed according to material properties of filter and the position of DPF.

Alteration of Leaf Surface Structures of Poplars under Elevated Air Temperature and Carbon Dioxide Concentration

  • Kim, Ki Woo;Oh, Chang Young;Lee, Jae-Cheon;Lee, Solji;Kim, Pan-Gi
    • Applied Microscopy
    • /
    • v.43 no.3
    • /
    • pp.110-116
    • /
    • 2013
  • Effects of elevated air temperature and carbon dioxide ($CO_2$) concentration on the leaf surface structures were investigated in Liriodendron tulipifera (yellow poplar) and Populus tomentiglandulosa (Suwon poplar). Cuttings of the two tree species were exposed to elevated air temperatures at $27/22^{\circ}C$ (day/night) and $CO_2$ concentrations at 770/790 ppm for three months. The abaxial leaf surface of yellow poplar under an ambient condition ($22/17^{\circ}C$ and 380/400 ppm) had stomata and epicuticular waxes (transversely ridged rodlets). A prominent increase in the density of epicuticular waxes was found on the leaves under the elevated condition. Meanwhile, the abaxial leaf surface of Suwon poplar under an ambient condition was covered with long trichomes. The leaves under the elevated condition possessed a higher amount of long trichomes than those under the ambient condition. These results suggest that the two poplar species may change their leaf surface structures under the elevated air temperature and $CO_2$ concentration condition for acclimation of increased photosynthesis.

Effects of Low Temperature during Ripening on Amylose Content and Enzyme Activities Associated with Starch Biosynthesis in Rice Endosperm

  • Baek, Jung-sun;Jeong, Han-Yong;An, Sung-Hyun;Jeong, Jae-Heok;Lee, Hyen-Seok;Yoon, Jong-Tak;Choi, Kyung-Jin;Hwang, Woon-Ha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.2
    • /
    • pp.86-97
    • /
    • 2018
  • The objective of this study was to determine the effects of low temperature on starch accumulation in rice grains. We used four major Japonica-type Korean rice cultivars as materials: Jinbu (JB), Junamjosaeng (JJ), Geumyoung (GY), and Hwawang (HW). Rice plants were moved into two phytotrons the day after heading. Temperatures in the two phytotrons were maintained at $19/29^{\circ}C$ (night/day) as the control, and $13/23^{\circ}C$ as the low temperature condition, both under natural daylight with a relative humidity of 65%. The ripening rates of JB and JJ showed no significant difference between the low temperature and control conditions at 45 days after heading (DAH). In contrast, the ripening rates of GY and HW were 86% and 57% lower than those of JB and JJ under the low temperature condition at 45 DAH, respectively. However, the ripening rates of these four varieties at 61 DAH (when accumulated temperature reached $1,100^{\circ}C$) under the low temperature condition were similar to those at 45 DAH under the control condition (JB, 94%; JJ, 97%; GY, 97%; HW, 88%). The total starch contents showed no significant difference between the control and low temperature conditions. However, the amylose contents in the cultivars were higher under the low temperature than under the control condition. The enzyme activities of starch biosynthesis were about 5-10 days slower in cultivars under the low temperature than under the control. The grain-filling rate showed significant correlations with the enzyme activities of SuSase ($r^2=0.70^{***}$), AGPase ($r^2=0.63^{***}$), UDPase ($r^2=0.36^{***}$), StSase ($r^2=0.51^{***}$), and SBE ($r^2=0.59^{***}$). In conclusion, although StSase activity was increased at $13/23^{\circ}C$ up to 20 DAH, there might not be enough time for SBE to synthesize amylopectin, thus affecting the amylose content of HW, which had the slowest grain filling rate. Notably, the decreased activity of SuSase and SBE and late increase in AGPase activity under the low temperature during the ripening stage are considered to be disadvantageous, as they delay ripening and increase the amylose content.

A study on the thermal characteristics of MOSS type LNG carrier (MOSS형 LNG 선박의 열공학적 특성에 관한 연구)

  • 이세동;송성옥;이종원;김춘식;최두열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.28-34
    • /
    • 1998
  • This paper introduced the thermal characteristics of Moss Rosenberg Verft spherical tank type LNG Carrier. Especially described the temperature variation during cooling down condition. It is not easy task to calculate the temperature variation because of unsteady state condition. In this paper, computer simulation program is developed by using a Tomas Algorithm on unsteady state condition and compared with calculation results and experimental results on existing LNG Carrier voyage.

  • PDF