• 제목/요약/키워드: Temperature condition

검색결과 11,216건 처리시간 0.048초

폐액 중 프로필 글리콜 모노메틸 에테르 아세테이트(PGMEA) 회수하는 증류공정에서 회귀분석을 이용한 공정 최적화 (Process Optimization Using Regression Analysis of Distillation Processes for the Recovery of Propylene Glycol Monomethyl Ether Acetate (PGMEA) Containing Waste Organic Solvent)

  • 최용석;변헌수
    • Korean Chemical Engineering Research
    • /
    • 제53권2호
    • /
    • pp.181-192
    • /
    • 2015
  • 본 연구는 Liquid Crystal Display (LCD) 세척 후 발생하는 Propylene Glycol Monomethyl Ether Acetate (PGMEA)폐액 재활용을 위한 2기 증류탑을 사용하는 공정의 최적 조건을 산출하였다. 공정조건 최적화 기법으로 다중회귀분석을 이용하여 1차 증류 시 Bottom 온도(BTM 온도), Reflux 량, Feed 량 및 Feed 온도에 따라 PGMEA 함량에 대한 최적 조건과 2차 증류 시 BTM 온도, Reflux 량, Feed 량에 따른 PGMEA 함량에 대한 최적 조건과 공정인자를 산출하였다. 1차 증류탑의 공정인자 중 Reflux 량, Feed 온도 및 Feed 량이 중요한 인자로 산출되었다. 본 연구의 공정조건 범위에서는 BTM 온도범위가 PGMEA함량에 크게 영향을 주지 못하였다. 따라서 최적 공정 조건은 Feed 량 $5,700{\ell}$, Reflux 량 $2,500{\ell}$, BTM 온도 $165^{\circ}C$ 및 Feed 온도 $130^{\circ}C$이며 이때 예측된 PGMEA 함량은 92.12~94.62%로 산출되었다. 2차 증류탑에서는 Reflux 량이 함량에 많은 영향을 미치고 있으며, Feed 량과 BTM 온도도 영향을 미치는 인자로 산출되었다. 다중공선성(Multicollinearity)이 Reflux 량과 BTM 온도 간에 강한 양의 상관관계가 있어, 두 인자 중 다중회귀식에 영향이 지배적인 인자 하나를 선택하였으며, 최적조건은 BTM 온도 $199^{\circ}C$ 기준에서 최적 공정 조건은 Feed 량 $4,275{\ell}$ 및 Reflux 량 $6,200{\ell}$이며, 이때 예측 PGMEA 함량은 99.0~99.5%로 산출되었다.

캐소드극 입구 가습 조건이 고분자 전해질 연료전지의 성능에 미치는 영향 (Effect of Inlet Humidity Condition at Cathode Side on Performance of a Polymer Exchange Membrane Fuel Cell)

  • 문철언;이서희;고동수;양장식;최경민;김덕줄
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3423-3428
    • /
    • 2007
  • This paper shows that inlet humidity condition at cathode side is one of dominant parameters affecting the performance of PEMFC. To investigate effects of inlet humidity condition, the performance measurements were conducted for a single PEMFC with two operating variables : cathode relative humidity and dry condition in anode dry. The fuel cell employed for the experiments is a unit PEMFC with a 25$Cm^2$, Nafion$^(R)$112 membrane. As a result of this study, the cell performance is getting higher by increasing inlet humidity condition at cathode side. The cell performance is different from each operating temperature an it has maximum30% higher than dry condition at 60$^{\circ}C$ operating temperature with 80% relative humidity.

  • PDF

서열환경에서 근적외선 조사의복 착용시의 온열생리반응 (The Study of Thermo-physiological Responses with Near Infrared Lighted Garment at a Hot Environment)

  • 김성숙;김우종;김희은
    • 한국의류산업학회지
    • /
    • 제7권6호
    • /
    • pp.665-672
    • /
    • 2005
  • The purpose of this study was to assess the feasibility and the effects of near infrared lighted garments on thermo-physiological responses in human body. Seven healthy adult men were recruited for this study. All subjects were informed the contents and purpose of this study. The experiment was carried out in a climate chamber of $32^{\circ}C$, 60%RH with 'Rest', 'Exercise' and 'Recovery' period. The experimental garments consisted of briefs, undershirts(sleeveless), nightclothes, T-shirts, knee-trousers and socks. Subjects participated in two experiments, one was wearing near infrared lighted garments(NIR-O), the other was wearing regular garments(NIR-X). The order of experiment was randomized, and subjects wore experimental garments before 24 hours in order to benefit by near infrared light. Measurement items included rectal temperature ($T_{re}$), mean skin temperature ($\bar{T}_{sk}$), sweat rate, heart rate, oxygen uptake and subjective sensation. The results are as follows: As to the variation of rectal temperature and mean skin temperature, value of wearing NIR-X was higher than value of wearing NIR-O, indicating a significant level of difference (p<.001). Sweat rate under NIR-O and NIR-X condition were 575.35 g and 535.75 g, respectively. Heart rate value of NIR-X condition was higher than NIR-O. Oxygen uptake measured during experiment was the higher in NIR-X condition with significant difference (p<.001). In the subjective sensation, the value of NIR-O condition was higher than NIR-X condition without significantly difference.

좌석시트 공조조건에 따른 착석자의 심리 및 생리적 반응 (Psychological and Physiological Responses of Occupants Caused by Types of Seat Air Conditioning)

  • 김보성;곽승현;서상혁;민병찬
    • 산업경영시스템학회지
    • /
    • 제38권3호
    • /
    • pp.14-20
    • /
    • 2015
  • It is important to understand psychological and physiological responses of occupants who seated in a chair in order to shape a comfortable indoor official environment. So it is needed to find out optimal seated conditions. The purpose of this study was to explore optimal condition of seat air conditioning control based on psychological or subjective responses (perceived temperature and comfort sensation) and physiological responses (heartrate variability; HRV). To do this, experimental conditions were designed by the difference of indoor temperature and seat air conditioning temperature. In the experiment 1, seven experimental conditions were designed with one control condition which was not used seat air conditioning system, and six experimental conditions which the difference of indoor temperature and seat air conditioning temperature ($-1^{\circ}C{\sim}-6^{\circ}C$). In the experiment 2, four experimental conditions were designed with one control condition and three experimental conditions ($-3^{\circ}C{\sim}-5^{\circ}C$). In addition, participants' psychological or subjective response was measured by CSV (comfort sensation vote) and PTS (perceived temperature sensitivity) as a psychological or subjective response, and heartrate variability was measured as a physiological response. As a result, in the experiment 1, it was reported that the optimal conditions of seat air conditioning control based on participants' psychological or subjective comfort were from $-3^{\circ}C$ to $-5^{\circ}C$ experimental conditions. In addition, in the experiment 2, it was reported that the optimal condition of seat air conditioning control based on participants' physiological comfort was $-4^{\circ}C$ experimental condition. These results suggested that seat air conditioning could affected to comfort sensation of occupants in an appropriate range, rather than unconditionally.

Extended Graetz Problem Including Axial Conduction and Viscous Dissipation in Microtube

  • Jeong Ho-Eyoul;Jeong Jae-Tack
    • Journal of Mechanical Science and Technology
    • /
    • 제20권1호
    • /
    • pp.158-166
    • /
    • 2006
  • Extended Graetz problem in microtube is analyzed by using eigenfunction expansion to solve the energy equation. For the eigenvalue problem we applied the shooting method and Galerkin method. The hydrodynamically isothermal developed flow is assumed to enter the microtube with uniform temperature or uniform heat flux boundary condition. The effects of velocity and temperature jump boundary condition on the microtube wall, axial conduction and viscous dissipation are included. From the temperature field obtained, the local Nusselt number distributions on the tube wall are obtained as the dimensionless parameters (Peclet number, Knudsen number, Brinkman number) vary. The fully developed Nusselt number for each boundary condition is obtained also in terms of these parameters.

공기압에 따른 타이어의 안전성 및 경제성에 관한 실험적 연구 (An Experimental Study of Tire Safety & Economical Efficiency with Respect to Inflation Pressure)

  • 홍승준;이호근
    • 한국자동차공학회논문집
    • /
    • 제18권1호
    • /
    • pp.8-13
    • /
    • 2010
  • Many vehicles have significantly under-inflated tires, primarily because drivers infrequently check their vehicles' tire pressure. When a tire is used while significantly under-inflated, its sidewalls flex more and the tire temperature increases, increasing stress and the risk of failure. In this study we evaluated tire safety and economical efficiency at various inflation pressure. For tire safety we performed FMVSS indoor durability test, measurement of rolling tire temperature, braking performance at dry/wet road condition, and rolling resistance test for economical efficiency. Results show that low pressure decreases tire durability of both speed-increase condition and load-increase condition. Heat temperature of rolling tire increases as pressure decreases and significantly under-inflated tires cause increase of vehicle's stopping distance at wet road condition. Also Under-inflation increases the rolling resistance of a tire and, correspondingly, decreases vehicle's fuel economy.

퍼지 알고리즘을 이용한 평면연삭의 형상정도 향상에 관한 연구 (A Sutdy on Improvement of Geomeric Accuracy by using Fuzzy Algorithm in Surface Grinding)

  • 천우진;김남경;하만경;송지복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.149-154
    • /
    • 1993
  • In heavy grinding that is on of the high efficient grinding method, meaningful deformation is generated by high temperature. So, after machining, geomeric error generated od the workpiece. The most important factor on the geometric error is temperature difference between upper layer and lower layer (T $_{d}$) . Relations between Td and grinding condition and maximum geometric error and grinding condition are obtained by experiment. This relations are used in fuzzy algorithm for improvement geometric accuracy. The main results are follows : (1) The linear relation between maximum geometric error and grinding condition is ovtained by experiment. (2) The linear relation between maximum temperature difference between upper layer and lower layer and grinding condition is ovtained by experiment. (3) Control peth of wheel for improvement geometric accuracy is obtained by using the fuzzy algorithm.m.

  • PDF

자기센서를 이용한 위치검출 실린더의 환경변화에 따른 성능평가 (Sensing performance evaluation under various environment condition of stroke sensing cylinder using magnetic sensor)

  • 김성현;이민철;양순용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.636-639
    • /
    • 1996
  • We have developed a part of hydraulic stroke sensing cylinder using magnetic sensor that can detect each position under severe construction fields. In this paper, for evaluating the developed cylinder under various environment condition, thermal control systems and two hydraulic systems to be coupled consist of. The former is composed of an heater case, temperature sensor, and interface circuits which include SCR(silicon controlled rectifier) for the control of the voltage's phase. The latter is composed of an hydraulic cylinder for position control with solenoid valve (ON/OFF motion) and a load cylinder with proportional reducing valve. To obtain the various performance evaluation, it is carried out under high temperature condition in thermal system controlled by using Ziegler-Nichols PID tuning method and artificial disturbances such as impulse or constant force. The results show that the developed cylinder has good performance under the various environment condition.

  • PDF

융착대 예측을 위한 고로공정 모델링 (Blast Furnace Modeling for Predicting Cohesive Zone Shape)

  • 양광혁;최상민;정진경
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.39-45
    • /
    • 2006
  • Analysis of the internal state of the blast furnace is needed to predict and control the operating condition. Especially, it is important to develop modeling of blast furnace for predicting cohesive zone because shape of cohesive zone influences overall operating condition of blast furnace such as gas flow, chemical reactions and temperature. because many previous blast furnace models assumed cohesive zone to be fixed, they can't evaluate change of cohesive zone shape by operation condition such as PCR, blast condition, and production rate. In this study, an axi-symmetric 2-dimensional steady state model is proposed to simulate blast furnace process. In this model, cohesive zone is changed by solid temperature range, FVM is used for numerical simulation. To find location of cohesive zone whole calculation procedure is iterated Until cohesive zone is converged. Through this approach, shape of cohesive zone, velocity, composition and temperature within the furnace are predicted by model.

  • PDF

Ti 합금의 기계가공 방법에 따른 경도 변화에 관한 연구 (Hardness of Ti alloys by mechanical processing methods)

  • 반재삼;김규하;정상원;기강호;조규종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.792-795
    • /
    • 2002
  • In previous researches, it is reported that Ti-10Ta-10Nb is robuster than Ti-6A1-4V which is used as a biomaterial in a experiment of cytotoxicity. Ti-10Ta-10Nb has enough hardness to be required as a biomaterial because the change of its hardness can be controlled more than 100% according to heat treatment condition and manufacturing condition. There are many hardness changing condition including Cast Homogenization, Solution treatment. Forging, Rolling in this research. The changing form and amount of new Ti-10Ta-10Nb to be developed in this researches, are measured as quantitative. Specially, the changing hardness amount of the specimen that is manufactured in single phase temperature, i.e. 80$0^{\circ}C$, are measured in case of high temperature rolling and high temperature cast condition.

  • PDF