• Title/Summary/Keyword: Temperature coefficient of capacitance

Search Result 65, Processing Time 0.019 seconds

Current-Voltage and Impedance Characteristics of ZnO-Zn2BiVO6-Co3O4 Varistor with Temperature (ZnO-Zn2BiVO6-Co3O4 바리스터의 전류-전압 및 임피던스의 온도)

  • Hong, Youn Woo;Kim, You Bi;Paik, Jong Hoo;Cho, Jeong Ho;Jeong, Young Hun;Yun, Ji Sun;Park, Woon Ik
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.440-446
    • /
    • 2016
  • This study introduces the characteristics of current-voltage (I-V) and impedance variance for $ZnO-Zn_2BiVO_6-Co_3O_4$ (ZZCo), which is sintered at $900^{\circ}C$, according to temperature changes. ZZCo varistor demonstrates dramatic improvement of non-linear coefficient, ${\alpha}=66$, with lower leakage current and higher insulating resistivity than those of ZZ ($ZnO-Zn_2BiVO_6$) from the aspect of I-V curves. While both systems are thermally stable up to $125^{\circ}C$, ZZCo represents a higher grain boundary activation energy with 1.05 eV and 0.94 eV of J-E-T and from IS & MS, respectively, than that of ZZ with 0.73 eV and 0.82 eV of J-E-T and from IS & MS, respectively, in the region above $180^{\circ}C$. It could be attributed to the formation of $V^*_o$(0.41~0.47 eV) as dominant defect in two systems, as well as the defect-induced capacitance increase from 781 pF to 1 nF in accordance with increasing temperature. On the other hand, both the grain boundary capacitances of ZZ and ZZCo are shown to decrease to 357 pF and 349 pF, respectively, while the resistances systems decreased exponentially, in accordance with increasing temperature. So, this paper suggests that the application of newly formed liquid phases as sintering additives in both $Zn_2BiVO_6$ and the ZZCo-based varistors would be helpful in developing commercialized devices such as chips, disk-type ZnO varistors in the future.

Properties Optimization for Perovskite Oxide Thin Films by Formation of Desired Microstructure

  • Liu, Xingzhao;Tao, Bowan;Wu, Chuangui;Zhang, Wanli;Li, Yanrong
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.715-723
    • /
    • 2006
  • Perovskite oxide materials are very important for the electronics industry, because they exhibit promising properties. With an interest in the obvious applications, significant effort has been invested in the growth of highly crystalline epitaxial perovskite oxide thin films in our laboratory. And the desired structure of films was formed to achieve excellent properties. $Y_1Ba_2Cu_3O_{7-x}$ (YBCO) superconducting thin films were simultaneously deposited on both sides of 3 inch wafer by inverted cylindrical sputtering. Values of microwave surface resistance R$_2$ (75 K, 145 GHz, 0 T) smaller than 100 m$\Omega$ were reached over the whole area of YBCO thin films by pre-seeded a self-template layer. For implementation of voltage tunable high-quality varactor, A tri-layer structured SrTiO$_3$ (STO) thin films with different tetragonal distortion degree was prepared in order to simultaneously achieve a large relative capacitance change and a small dielectric loss. Highly a-axis textured $Ba_{0.65}Sr_{0.35}TiO_3$ (BST65/35) thin films was grown on Pt/Ti/SiO$_2$/Si substrate for monolithic bolometers by introducing $Ba_{0.65}Sr_{0.35}RuO_3$ (BSR65/35) thin films as buffer layer. With the buffer layer, the leakage current density of BST65/35 thin films were greatly reduced, and the pyroelectric coefficient of $7.6\times10_{-7}$ C $cm^{-2}$ $K^{-1}$ was achieved at 6 V/$\mu$m bias and room temperature.

Effects of Chamber Pressure on Dielectric Properties of Sputtered MgTiO3 Films for Multilayer Ceramic Capacitors

  • Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.20 no.7
    • /
    • pp.374-378
    • /
    • 2010
  • $MgTiO_3$ thin films were prepared by r.f. magnetron sputtering in order to prepare miniaturized NPO type MLCCs. $MgTiO_3$ films showed a polycrystalline structure of ilmenite characterized by the appearance of (110) and (202) peaks. The intensity of the peaks decreased with an increase in the chamber pressure due to the decrease of crystallinity which resulted from the decrease of kinetic energy of the sputtered atoms. The films annealed at $600^{\circ}C$ for 60min. showed a fine grained microstructure without micro-cracks. The grain size and roughness of the $MgTiO_3$ films decreased with the increase of chamber pressure. The average surface roughness was 1.425~0.313 nm for $MgTiO_3$ films prepared at 10~70 mTorr. $MgTiO_3$ films showed a dielectric constant of 17~19.7 and a dissipation factor of 2.1~4.9% at 1MHz. The dielectric constant of the films is similar to that of bulk ceramics. The dielectric constant and the dissipation factor decreased with the increase of the chamber pressure due to the decrease of grain size and crystallinity. The leakage current density was $10^{-5}\sim10^{-7}A/cm^2$ at 200kV/cm and this value decreased with the increase of the chamber pressure. The small grain size and smooth surface microstructure of the films deposited at high chamber pressure resulted in a low leakage current density. $MgTiO_3$ films showed a near zero temperature coefficient and satisfied the specifications for NPO type materials. The dielectric properties of the $MgTiO_3$ thin films prepared by sputtering suggest the feasibility of their application for MLCCs.

The Electrical Properties of Mutilayer Chip Capacitor with X7R by Addition of Rare-Earth Ions (Y2O3, Er2O3) using Design of Experiments (실험계획법을 적용한 X7R 적층 칩 커패시터의 희토류(Y2O3, Er2O3) 첨가에 따른 전기적 특성)

  • Yoon, Jung-Rag;Moon, Hwan;Lee, Heun-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.3
    • /
    • pp.216-221
    • /
    • 2010
  • Employing statistical design of experiments, the difference in doping behaviors of rare-earth ions and their effects on the dielectric property and microstructure of $BaTiO_3$-MgO-$MnO_2$-($Ba_{0.4}Ca_{0.6}$) $SiO_3-Re_2O_3$ (Re = $Y_2O_3$, $Er_2O_3$) system were investigated. Through the statistical analysis we have found that the amount of $Re_2O_3$ are significantly affecting on the dielectric properties. The $Re_2O_3$ improved the dielectric constant, dielectric loss and R*C constant, so the appropriate contents of $Y_2O_3$ and $Er_2O_3$ were 0.8 ~ 1.2 mol% and 0.8 ~ 1.3 mol%, respectively. The MLCC(mutilayer chip capacitor) with $2.0{\times}1.2{\times}1.2mm$ size and 475 nF was also suited for X7R with the above composition. It showed that the dielectric constant and RC constant were 2,839 and 3,675 ${\Omega}F$, respectively in the sintering condition at $1250^{\circ}C$ in $Po_2$ $10^{-7}$ Mpa.

Effects of CaCO3 on the Defects and Grain Boundary Properties of ZnO-Co3O4-Cr2O3-La2O3 Ceramics (ZnO-Co3O4-Cr2O3-La2O3 세라믹스의 결함과 입계 특성에 미치는 CaCO3의 영향)

  • Hong, Youn-Woo;Ha, Man-Jin;Paik, Jong-Hoo;Cho, Jeong-Ho;Jeong, Young-Hun;Yun, Ji-Sun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.307-312
    • /
    • 2018
  • Liquid phases in ZnO varistors cause more complex phase development and microstructure, which makes the control of electrical properties and reliability more difficult. Therefore, we have investigated 2 mol% $CaCO_3$ doped $ZnO-Co_3O_4-Cr_2O_3-La_2O_3$ (ZCCLCa) bulk ceramics as one of the compositions without liquid phase sintering additive. The results were as follows: when $CaCO_3$ is added to ZCCLCa ($644{\Omega}cm$) acting as a simple ohmic resistor, CaO does not form a secondary phase with ZnO but is mostly distributed in the grain boundary and has excellent varistor characteristics (high nonlinear coefficient ${\alpha}=78$, low leakage current of $0.06{\mu}A/cm^2$, and high insulation resistance of $1{\times}10^{11}{\Omega}cm$). The main defects $Zn_i^{{\cdot}{\cdot}}$ (AS: 0.16 eV, IS & MS: 0.20 eV) and $V_o^{\bullet}$ (AS: 0.29 eV, IS & MS: 0.37 eV) were found, and the grain boundaries had 1.1 eV with electrically single grain boundary. The resistance of each defect and grain boundary decreases exponentially with increasing the measurement temperature. However, the capacitance (0.2 nF) of the grain boundary was ~1/10 lower than that of the two defects (~3.8 nF, ~2.2 nF) and showed a tendency to decrease as the measurement temperature increased. Therefore, ZCCLCa varistors have high sintering temperature of $1,200^{\circ}C$ due to lack of liquid phase additives, but excellent varistor characteristics are exhibited, which means ZCCLCa is a good candidate for realizing chip type or disc type commercial varistor products with excellent performance.