• Title/Summary/Keyword: Temperature and Salinity

Search Result 1,388, Processing Time 0.03 seconds

Dispersion of High Temperature and High Salinity Water Discharged from Offshore Desalination Plant (해상 담수화 공장에서 배출되는 고온고염 해수의 확산예측)

  • Lee Moonjin;Hong Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.2
    • /
    • pp.33-40
    • /
    • 2000
  • Dispersion of high temperature and high salinity water discharged from a desalination plant is numerically estimated to investigate its impact on marine environment. The plant is installed on a floating barge located in Jinhae Bay and takes 200 tons of seawater per day. Fifty tons of intake are changed into fresh water, while 150 tons of those are discharged as the water of 15℃ warmer and 1.33 times saltier than surrounding seawater. In this dispersion model, advection is described by two-dimensional tidal currents and turbulent diffusion is simulated by Monte Carlo technique. Decay of water temperature is modelled by heat exchange between the atmosphere and the ocean, while decay of water salinity is ignored. The distributions of temperature and salinity come to equilibrium when the dispersion model is run for 100 days for temperature and for 365 days for salinity, respectively. At equilibrium state the water temperature and salinity rise 0.01℃ and 0.001‰ higher than ambient seawater, respectively.

  • PDF

Accuracy and Stability of Temperature and Salinity from Autonomous Profiling CTD Floats (ARGO Float) (자동 수직물성관측 뜰개(ARGO Float)로 얻은 수온과 염분의 정확도와 안정도)

  • 오경희;박영규;석문식
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.4
    • /
    • pp.204-211
    • /
    • 2004
  • Autonomous profiling CTD floats are a useful tool for observing the oceans. We, however, cannot perform post-deployment calibration of the CTD's attached to the floats, and the assessment of the accuracy and stability of the profile data from the floats is one of the important issues in the delayed mode quality control of the profiles. Variations in salinity in the intermediate level of East Sea is comparable to the accuracy of salinity data required by the international Argo Program, which is 0.01. Therefore, we can assess the credibility of salinity data from the floats deployed in the East Sea using three independent methods while considering the East Sea as a salinity calibration bath. The methods utilized here are 1) comparison of high quality CTD data and float data obtained at similar locations at similar time, 2) comparison of float data obtained at similar locations at similar time, and 3) investigation of long term stability and accuracy of salinity data from parking depths. All three methods show that without any calibration, the salinity data satisfy the accuracy criterion by the Argo Program. While assuming that the intermediate level temperature in the East Sea is as homogeneous as the salinity, we have applied the three methods to temperature data. We found that the accuracy of temperature reading is 0.01$^{\circ}C$, which is about twice larger than the requirement by the Argo Program, 0.005$^{\circ}C$. This does not mean that the temperature readings are inaccurate, because the intermediate level temperature does vary spacially and temporally more than the accuracy interval required by the Argo Program. If we take into account the variation in the intermediate level temperature, the accuracy of temperature data from the floats is not significantly different from that proposed by the Argo Program. Therefore, one could use both temperature and salinity profiles from the floats assessed in this study without calibration.

Effects of Temperature and Salinity on Survival and Metabolism of the hard shelled mussel Mytilus coruscus, Bivalve: Mytilidae (홍합, Mytilus coruscus 치패의 생존과 대사에 미치는 수온 및 염분의 영향)

  • 신윤경;위종환
    • Journal of Aquaculture
    • /
    • v.17 no.2
    • /
    • pp.103-108
    • /
    • 2004
  • Effects of temperature and salinity were investigated on physiological responses of Mytilus coruscus seedlings. Temperature tolerance and survival of M. coruscus, were examined at temperature 20, 25, 28, 30 and 35$^{\circ}C$ for 9 das. Survival of M. coruscus was 90% at temperature 2$0^{\circ}C$ and $25^{\circ}C$. LT$_{50}$ (lethal temperature) of 9 days was at 27.1$^{\circ}C$. The respiration and filtration rates of M. coruscus were increased with temperature up to $25^{\circ}C$, and decreased with temperature ranged from $25^{\circ}C$ to 3$0^{\circ}C$. LS$_{50}$ (lethal salinity, psu) of 9 days at 1$0^{\circ}C$, 15$^{\circ}C$ and $25^{\circ}C$ were 17.01 psu, 19.95 psu and 21.79 psu respectively. Salinity affected survival of M. coruscus with higher temperature. However the respiration and filtration rates were reduced with lower salinity.

Effects of Temperature and Salinity on Survival, Metabolism and Histological Change of the Rockfish, Sebastes schlegeli (수온과 염분이 조피볼락, Sebastes schlegeli의 생존, 대사 및 조직학적 변화에 미치는 영향)

  • YANG, Sung Jin;LEE, Jeong Young;SHIN, Yun kyung;HWANG, Hyung Kyu;MYEONG, Jeong-In
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.4
    • /
    • pp.1068-1075
    • /
    • 2016
  • The suitable temperature and salinity for the long-distance transportation for the rockfish were investigated by assessing survival rate, metabolism, histological change. All experimental groups showed survival rates of 100%. Daily Oxygen consumption rhythm was decreased during nights and increased during days. Average oxygen consumption was significantly decreased as temperature and salinity were decreased. Ammonia excretion was significantly increased as temperature and salinity were decreased. Histological changes were observed in the skin and gill of the rockfish exposed to 10 psu under all the temperature conditions, with larger changes at $4^{\circ}C$. Further, nucleus deformation and uniformity in the cytoplasm were also observed.

Effects of Temperature and Salinity on Early Development, Survival and Growth Rate in Seabass, Lateolabrax Japonicus (농어, Lateolabrax Japonicus의 초기 발달, 성장 및 생존율에 미치는 수온과 염분의 영향)

  • 한형균;강덕영;허성범;김성원
    • Journal of Aquaculture
    • /
    • v.14 no.1
    • /
    • pp.17-27
    • /
    • 2001
  • Effects of temperature (10, 12, 14, 16, 18 and 2$0^{\circ}C$) and salinity (22.0, 24.5, 27.0, 29.5, 32.0 and 34.5 ppt) were studied on incubation period, hatching success, survival and growth of alevin and juvenile seabass, L. japonicus. Embryonic development was accelerated with increasing temperature but it was not influenced by salinity. Hatching success was the highest at 14$^{\circ}C$ and 34.5 ppt. Higher temperature also accelerated the development of mouth opening, absorption of yolk and oil globules, and alevin growth. Survival of the 5-day old Juvenile was accelerated in the following order : 14<16<18<20<12$^{\circ}C$. Rearing experiment of the juvenile for 30-day indicated the faster growth at 13, 20 and 27 ppt than at 34 ppt.

  • PDF

THE VARIATION COEFFICIENT OF WATER TEMPERATURE AND SALINITY IN THE SOUTHERN SEA OF KOREA (韓國 南海의 水溫과 분의 變動係數)

  • Kim, Bok-Kee
    • 한국해양학회지
    • /
    • v.17 no.2
    • /
    • pp.74-82
    • /
    • 1982
  • The study on the variation coefficient of water temperature and salinity was comducted during the year from 1968 to 1980 in the Southern Sea of Korea. The results obtaland from the study as followes; 1. The variation coefficient of water temperature and salinity wewe large either at the front area or the thermocline and malocline area. 2. The variation coefficient of water temperature was the largest at the time when the power was strong ty each water mass(The largest value in Tsushima and Yellow Sea Warm Current area was occurred at the 50m layer in the Summer, and that in the South Korean Coastal Water area and the Southern Part of Yellow Sea was at all layer in the Winter). 3. The variation coefficient of salinity was the largest at the surface layer in warm current area that was influenced by the low salinity of the East China Coastal Water in the Summer ,and that of salinity in the South Korean Coastal Water area and Soutern Part of Yellow Sea was nearly half of the value of the warm current area.

  • PDF

Salinity Determination for Sea Water Using Immersion-Type On-Line Refractometer (침적식 온라인 굴절계를 이용한 해수의 염도 측정)

  • Kim, Byoung-Chul;Kim, Young-Han;Chan, Sang-Mok
    • Journal of Navigation and Port Research
    • /
    • v.26 no.5
    • /
    • pp.571-575
    • /
    • 2002
  • An immersion-type on-line refractometer useful for the in-situ measurement of salinity and temperature of sea water is developed, and its performance is examined by applying the refractometer to known salt solution having salt concentration between 2 and 4 % similar to practical sea water salinity. Since refractive index and temperature are measured simultaneously, it is possible to compensate the effect of temperature for fast and direct measurement. The outcome of salinity measurement for the different concentrations of salt solution indicates that the device is suitable for the salinity measurement by yielding stable and reproducible reading.

NITROGEN EXCRETION IN THE BIVALVE MOLLUSCS (이매패의 질소배설 2. 굴)

  • CHIN Pyung;LEE Bok Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.12 no.4
    • /
    • pp.293-296
    • /
    • 1979
  • The effects of temperature and salinity on tile rates of ammonia and amino nitrogen excretion, and oxygen consumption were measured for Crassostrea gigas. There was variability with temperature and salinity changes in both the rates of nitrogen excretion and the proportionality between ,ammonia and amino acids in the excreta, and also in the rates of oxygen consumption. Rates of nitrogen excretion and oxygen consumption were markedly decreased with increase in salinity, especially at high salinity-high temperature, whereas at low salinity-high temperature condition they were significantly increased. These changes are considered as the responses of physiological tolerances to the high temperature stress and the results of the metabolic temperature compensation at the low salinity-high temperature condition. Most of nitrogenous excretory products was ammonia, and large amounts of amino-nitrogen was excreted, and especially the rate of amino-nitrogen excretion was dominant at $32.5\%_{\circ}-22^{\circ}C$. The amounts of amino-nitrogen excreted by animals were decreased in the medium of high salinity and increased in the medium of low salinity through the experimental temperature. The atomic ratios of oxygen consumed to ammonia-nitrogen excreted (O: N ratio) was low at the low temperature $(15^{\circ}C)$, and was high at $22^{\circ}$ and $29^{\circ}C$ in the medium of 32.5 and $37.5\%_{\circ}$ but low in the low salinity $27.5\%_{\circ}$.

  • PDF

Distribution of Anchovy School catched by the lift Net and Environmental Factors in the Kamak Bay 1. Relation between distribution of the Anchovy School and Temperature and salinity (가막만에서의 멸치 들망 어장의 분포.이동과 환경 요인의 관계 1.수온.연분과 어군의 분포)

  • 서영준
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.3
    • /
    • pp.267-276
    • /
    • 1999
  • In order to investigate the properties in distribution and movement of anchovy school catches by the lift net in the Kamak bay and their relation to the environmental factors, i.e., the water temperature and the salinity were observed form June to August in 1997 and compared with the catch of anchovy by the lift net. The results obtained are summarized as follows;1) The water temperature and salinity ranged form 20.0 to $27.0^{\circ}C\;and\;from\;31.2\;to\;33.8\texperthousand$, respectively. The water temperature and salinity at the fishing points ranged form 19.7 to $27.2^{\circ}C\;and,\;from\;30.5\;to\;33.8^{\circ}C$ respectively.2) The water temperature influenced remarkably on the distribution and movement of anchovy school. But the salinity influenced little on the distribution and movement. 3) The catch of anchovy was highest on July, poor second on August, and lowest on June. Anchovy school can be presurmed, they are come from north of bay, visited and distributed through east of bay at the middle of June. Moreover, they spreaded in all bay. Then gradually, when July arrive, they go to the south th nearest the coasts, and they are outflow through the south entrance of bay at the end of August.

  • PDF

Characteristics of the Oceanographic Environment in the Aleutian Basin of the Bering Sea during Spring (춘계 베링해 알류산 해분의 해양환경 특성)

  • Choi, Seok-Gwan;Oh, Taeg Yun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.2
    • /
    • pp.201-215
    • /
    • 2013
  • The characteristics of the oceanographic environment in the Aleutian Basin of the Bering Sea during spring in 1996, 1997, and 1999 were clarified. An investigation of the water properties revealed five basic layers in the Bering Sea during spring: (1) a surface layer of warm and low-salinity water induced by solar heating, (2) a subsurface layer of cold and low-salinity water propagated slowly by heat from the surface layer, (3) a thermocline layer where salinity was constant but temperature sharply decreased, (4) a temperature inversion layer, and (5) a deep layer with a gradual decrease in temperature and increase in salinity toward the bottom. The ranges of water temperature and salinity were $1.8-5.5^{\circ}C$ and 31.81-34.08 in 1996, $1.5-7.2^{\circ}C$ and 31.9-34.06 in 1997, and $0.5-5.6^{\circ}C$ and 32.0-34.11 in 1999, respectively. The water temperature of the surface layer was approximately $1.6^{\circ}C$ higher in 1997 than in 1996 and 1999. The lowest temperature at a depth of 100-150 m was about $1^{\circ}C$ lower in 1999 than in 1996 and 1997. Nutrient levels (nitrate, phosphate, and silicate) contributing to the control of the growth of phytoplankton were higher in the Aleutian Basin than in the eastern continental shelf and Bogoslof Island area. This was closely associated with the phytoplankton distribution. Nutrient concentrations were lowest at a depth of 25 m. The high primary production at that depth was confirmed from the vertical distribution of chlorophyll a. Chlorophyll a levels were above $4.0{\mu}L^{-1}$ in some areas in 1996 and 1999, but below $2.0{\mu}L^{-1}$ in most areas in 1997. Zooplankton density was about three times higher in 1999 than in 1997.