• 제목/요약/키워드: Temperature and Mass Transfer Effects

검색결과 147건 처리시간 0.025초

수평원관 내 CO2 R-22 및 R-134a의 증발열전달 특성에 관한 실험적 연구 (Evaporation Heat Transfer Characteristics of CO2 R-22 and R-134a in a Horizontal Smooth Tube)

  • 윤린;황준현;최영돈;김용찬
    • 대한기계학회논문집B
    • /
    • 제26권7호
    • /
    • pp.911-918
    • /
    • 2002
  • Evaporation heat transfer coefficients of carbon dioxide($CO_2$), R-22, and R-134a in a horizontal smooth tube were measured and analyzed as a function of heat flux, mass flux, and evaporating temperature. The experiments were carried out by varying heat flux from 10 to 20 $kW/m^2$, mass flux from 170 to 340 $kg/m^2s$, and saturation temperatures of 5 and $10^{\circ}C$. It was found that the heat transfer coefficient of $CO_2$ decreased with a rise of quality due to an earlier liquid-film dryout as compared to R-22 and R-134a. Averaged heat transfer coefficients of $CO_2$ were 22-63% higher than those of R-22 and R-134a at all test conditions. The effects of mass flux and heat flux on averaged heat transfer coefficients were much greater in $CO_2$ than in R-22 and R-134a. When comparing $CO_2$ test results with the correlations in the literature, the existing models yielded large deviations at medium and high qualities. Therefore, a generalized correlation for $CO_2$evaporation heat transfer needs to be developed by including the effects of dryout phenomenon.

젖은 벽탑을 이용한 디에틸렌트리아민과 디에틸에탄올아민 수용액의 CO2 흡수속도 측정 (Kinetics of CO2 Absorption in Aqueous DETA and DEEA Solutions by Wetted-Wall Column)

  • 유정균;이준;홍연기
    • Korean Chemical Engineering Research
    • /
    • 제60권4호
    • /
    • pp.582-587
    • /
    • 2022
  • 연소 배가스 중 CO2를 포집하기 위한 에너지 저감형 흡수제로 상분리 흡수제가 주목 받고 있다. 본 연구에서는 2종의 아민을 혼합한 상분리 흡수제 중 하나인 디에틸렌트리아민(diethylenetriamine, DETA)과 디에틸아미노에탄올(diethylaminoethanol, DEEA) 흡수제를 구성하는 DETA와 DEEA 각각의 흡수 속도를 측정하기 위해 젖은 벽탑을 사용하였다. 총괄 물질전달 계수에 대한 DETA 및 DEEA의 농도와 조업 온도에 따른 영향을 고찰하였다. 그 결과 DETA 농도에 따라 총괄 물질전달 계수는 비례하였지만 DEEA 농도의 경우 그 영향이 적었고 일정 농도를 넘어설 경우 총괄 물질전달 계수가 감소하였다. DETA 수용액은 조업 온도에 따라 총괄 물질전달 계수의 변화가 적었던 반면 DEEA 수용액은 조업 온도에 따라 총괄 물질전달 계수가 증가하였다. 의사 1차 반응 가정 하에서 관찰 반응 속도 상수를 구한 결과 DETA 수용액에서의 관찰 반응속도 상수는 DETA 농도에 따라 비례하는 관계를 가지나 DEEA는 의사 1차 반응 가정에 맞지 않는 것으로 나타났다.

좁은 휜이 달린 경사면을 흐르는 리튬브로마이드 수용액 흡수기에서의 열 및 물질전달 (Coupled Heat and Mass Transfer in Absorption of Water Vapor into LiBr-$H_2O$ Solution Flowing over a Finned Inclined Surface)

  • 조은준;서태범
    • 설비공학논문집
    • /
    • 제13권9호
    • /
    • pp.860-867
    • /
    • 2001
  • Absorption of water vapor into LiBr-$H_2O$ O solution flowing over a finned inclined surface is numerically investigated. The momentum, energy, and diffusion equation are numerically solved using a finite difference method. The four different shapes of the wall surfaces are considered to find the best surface for absorption assuming that the wall temperature and the surface tension are constant. The effects of the fin interval and Reynolds number are investigated. Based on the numerical results, it is known that the parabolic surface shows better absorption performance than the other surfaces, and that water vapor absorption increases gradually with decreasing the fin interval.

  • PDF

물과 나노유체 액적의 고온 벽면에서의 증발 특성에 관한 연구 (A Study on the Evaporation Characteristics of Water or Nanofluid Droplets on a Heated Surface)

  • 김진한;이경재;정선욱;강보선
    • 한국분무공학회지
    • /
    • 제21권4호
    • /
    • pp.177-183
    • /
    • 2016
  • In this study, the evaporation characteristics of water or nanofluid droplets on a heated surface was investigated by visualization of the evaporation process and evaluation of the heat transfer coefficient using the droplet temperature measured. The evaporation characteristics was compared between water and nanofluid droplets and the effects of the mass ratio of nanofluid and the inclination of heated surface were analyzed. The heat transfer rate of nanofluid droplet was higher than that of water droplet. The heat transfer coefficient was increased with the increase of the mass ratio of nanofluid. The effect of the inclination of heated surface was much higher than that of fluid type used, which indicates that the inclination of heated surface should be considered as one of influential parameters in the spray cooling process.

Numerical study of desalination by Sweeping Gas Membrane Distillation

  • Loussif, Nizar;Orfi, Jamel
    • Membrane and Water Treatment
    • /
    • 제11권5호
    • /
    • pp.353-361
    • /
    • 2020
  • The present study deals with a numerical investigation of heat and mass transfer in a Sweeping Gas Membrane Distillation (SGMD) used for desalination. The governing equations expressing the conservation of mass, momentum, energy and species with coupled boundary conditions were solved numerically. The slip boundary condition applied on the feed saline solution-hydrophobic membrane interface is taken into consideration showing its effects on profiles and process parameters.The numerical model was validated with available experimental data and was found to be in good agreement particularly when the slip condition is considered. The results of the simulations highlighted the effect of slip boundary condition on the velocity and temperature distributions as well as the process effectiveness. They showed in particular that as the slip length increases, the permeate flux of fresh water and process thermal efficiency rise.

수직응고 시스템에서 밀도차와 냉각률이 열전달 및 열응력에 미치는 영향 (Effects of Density Change and Cooling Rate on Heat Transfer and Thermal Stress During Vertical Solidification Process)

  • 황기영;이진호
    • 대한기계학회논문집
    • /
    • 제19권4호
    • /
    • pp.1095-1101
    • /
    • 1995
  • Numerical analysis of vertical solidification process allowing solid-liquid density change is performed by a hybrid method between a winite volume method (FVM) and a finite element method (FEM). The investigation focuses on the influence of solid-liquid density change and cooling rates on the motion of solid-liquid interface, solidified mass fraction, temperatures and thermal stresses in the solid region. Due to the density change of pure aluminium, solid-liquid interface moves more slowly but the solidified mass fraction is larger. The cooling rate of the wall is shown to have a significant influence on the phase change heat transfer and thermal stresses, while the density change has a small influence on the motion of the interface, solidified mass fraction, temperature distributions and thermal stresses. As the cooling rate increases, the thermal stresses become higher at the early stage of a solidification process, but it has small influence on the final stresses as the steady state is reached.

다결정 실리콘의 화학증착에 대한 연구 (A Study on Chemical Vapor Deposition of Polycrystalline Silicon.)

  • 소명기
    • 산업기술연구
    • /
    • 제2권
    • /
    • pp.13-19
    • /
    • 1982
  • Polycrystalline silicon layers have been deposited by a chemical vapor deposition technique using $SiCl_4$, $H_2$ gas mixture on single crystal silicon substrates. In this work, the effects of depostion temperature and total flow rate on the deposition rate of polycrystalline silicon are investigated. From the experimental results it was found that the formation reaction of polycrystalline silicon was limited by surface reaction and mass transfer controlled as the deposition temperature was increased. The morphology of polycrystalline silicon layer changed from a fine structure to a coarse one as the deposition temperature was increased.

  • PDF

원형관 코팅장치에서 연소 입자의 응축성장에 미치는 2차원 열 및 물질전달의 영향 (Effects of Two-dimensional Heat and Mass Transports on Condensational Growth of Soot Particles in a Tubular Coater)

  • 박성훈
    • 한국입자에어로졸학회지
    • /
    • 제9권3호
    • /
    • pp.163-171
    • /
    • 2013
  • Soot particles emitted from combustion processes are often coated by non-absorbing organic materials, which enhance the global warming effect of soot particles. It is of importance to study the condensation characteristics of soot particles experimentally and theoretically to reduce the uncertainty of the climate impact of soot particles. In this study, the condensational growth of soot particles in a tubular coater was modeled by a one-dimensional (1D) plug flow model and a two-dimensional (2D) laminar flow model. The effects of 2D heat and mass transports on the predicted particle growth were investigated. The temperature and coating material vapor concentration distributions in radial direction, which the 1D model could not accounted for, affected substantially the particle growth in the coater. Under the simulated conditions, the differences between the temperatures and vapor concentrations near the wall and at the tube center were large. The neglect of these variations by the 1D model resulted in a large error in modeling the mass transfer and aerosol dynamics occurring in the coater. The 1D model predicted the average temperature and vapor concentration quite accurately but overestimated the average diameter of the growing particles considerably. At the outermost grid, at which condensation begins earliest due to the lowest temperature and saturation vapor concentration, condensing vapor was exhausted rapidly because of the competition between condensations on the wall and on the particle surface, decreasing the growth rate. At the center of the tube, on the other hand, the growth rate was low due to high temperature and saturation vapor concentration. The effects of Brownian diffusion and thermophoresis were not high enough to transport the coating material vapor quickly from the tube center to the wall. The 1D model based on perfect radial mixing could not take into account this phenomenon, resulting in a much higher growth rate than what the 2D model predicted. The result of this study indicates that contrary to a previous report for a thermodenuder, 2D heat and mass transports must be taken into account to model accurately the condensational particle growth in a coater.

암모니아-물 랭킨사이클의 증발기에서의 엑서지 및 엔트랜시 성능 특성 해석 (Performance Characteristics Analysis of Evaporator in Ammonia-Water Rankine Cycle Based on Exergy and Entransy)

  • 김경훈;정영관
    • 한국수소및신에너지학회논문집
    • /
    • 제30권6호
    • /
    • pp.621-628
    • /
    • 2019
  • The use of the ammonia-water zeotropic mixture as a working fluid in the power generating system has been considered as a proven technology for efficient recovery of low-grade heat sources. This paper presents a thermodynamic performance analysis for ammonia-water evaporator using low-grade heat source, based on the exergy and entransy which has been recently introduced as a physical quantity to describe the heat transfer ability of an object. In the analysis, effects of the ammonia mass fraction and source temperature of the binary mixture are investigated on the system performance such as heat transfer, effectiveness, exergy destruction, entransy dissipation, and entransy dissipation based thermal resistance. The results show that the ammonia mass concentration and the source temperature have significant effects on the thermodynamic system performance of the ammonia-water evaporator.

DUFOUR AND HEAT SOURCE EFFECTS ON RADIATIVE MHD SLIP FLOW OF A VISCOUS FLUID IN A PARALLEL POROUS PLATE CHANNEL IN PRESENCE OF CHEMICAL REACTION

  • VENKATESWARLU, M.;BABU, R. VASU;SHAW, S.K. MOHIDDIN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제21권4호
    • /
    • pp.245-275
    • /
    • 2017
  • The present investigation deals, Dufour and heat source effects on radiative MHD slip flow of a viscous fluid in a parallel porous plate channel in presence of chemical reaction. The non-linear coupled partial differential equations are solved by using two term perturbation technique subject to physically appropriate boundary conditions. The numerical values of the fluid velocity, temperature and concentration are displayed graphically whereas those of shear stress, rate of heat transfer and rate of mass transfer at the plate are presented in tabular form for various values of pertinent flow parameters. By increasing the slip parameter at the cold wall the velocity increases whereas the effect is totally reversed in the case of shear stress at the cold wall. It is observed that the effect of Dufour and heat source parameters decreases the velocity and temperature profiles.