• Title/Summary/Keyword: Temperature Variation Rate

Search Result 994, Processing Time 0.029 seconds

Spatial Distribution of Air Temperature during an Extreme Heat Period in Daegu Metropolitan Area in 2016 (2016년 여름철 폭염 시기 대구의 기온공간분포 특성)

  • Kim, Ji-Hye;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.26 no.9
    • /
    • pp.1023-1029
    • /
    • 2017
  • We studied the distribution of air temperature using the high density urban climate observation network data of Daegu. The observation system was established in February 2013. We used a total of 38 air temperature observation points (23 thermometers and 18 AWSs). From the distribution of monthly averaged air temperatures, air temperatures at the center of Daegu were higher than in the suburbs. The daily minimum air temperature was more than or equal to $25^{\circ}C$ and the daily maximum air temperature was more than or equal to $35^{\circ}C$ at the elementary school near the center of Daegu. Also, we compared the time elements, which are characterized by the diurnal variation of surface air temperature. The warming and cooling rates in rural areas were faster than in urban areas. This is mainly due to the difference in surface heat capacity. These results indicate the influence of urbanization on the formation of the daily minimum temperature in Daegu.

An Analysis on the Effect of Reinforced Steel Bar to the Beat of Hydration in the Concrete Structures (철근의 영향을 고려한 콘크리트 구조물의 수화열 해석)

  • 양옥빈;윤동용;민창식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.35-40
    • /
    • 2002
  • This paper presents a numerical study on the heat of hydration of reinforced concrete with different steel ratio. And this study intends to determine the effect of the steel on the variation of temperatures during hydration. In order to do this, the thermal analyses of the pier-foundation models were carried out using the finite element analysis program, ADINA. As the steel rate increased, the maximum temperature and the internal-external temperature difference decreased.

  • PDF

볼베어링 발열에 관한 실험적 고찰

  • 나희형;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.190-197
    • /
    • 1997
  • The heat generation of angular contact ball bearings and deep groove ball bearings is studied with experiment and simulation. The temperature variation of inner, outer races and the temperature incresement distribution are measured by using thermocouples for the shaft speed, preload, viscosity of lubrucant and lubrication method. The measured values from experiment are used to estimate the heat generation rate. Oil-air lubrication using oils with different viscosities and grease lubrication are adopted.

  • PDF

이중냉각자켓의 냉각유량에 따른 모터내장형 고속주축계의 열특성

  • 최대봉;황주호;임경진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.239-243
    • /
    • 1997
  • The heat generation is the most important problem in the motor integrated spindle. Double cooling jacket in necessary to reduce the thermal displacement and to get the stable temperature disribution for the housing. In this study, the effects of temperature distribution and thermal displacement for the spindle system according to the variation of cooling oil flow rate are investigated experimentally on the motor-integrated spindle with double cooling jacket system. The experimental spindel system is composed with the angular contact steel ball bearings, oil-air lubrication, air or oil jacket cooling system.

Intelligent Control of Power Plant Using Immune Algorithm Based Multiobjective Fuzzy Optimization

  • Kim, Dong-Hwa
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.525-530
    • /
    • 2003
  • This paper focuses on design of nonlinear power plant controller using immune based multiobjective fuzzy approach. The thermal power plant is typically regulated by the fuel flow rate, the spray flow rate, and the gas recirculation flow rate. However, Strictly maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature. the change of the dynamic characteristics in the steam-turbine system. Up to the present time, PID Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. These parameters tuned by multiobjective based on immune network algorithms could be used for the tuning of nonlinear power plant.

  • PDF

A Study for the Output Increament of the Hydrogen Gas Turbine with Water Injection (물분사 수소 가스터빈의 출력 향상을 위한 연구)

  • Jung, K.S.;Oh, B.S.
    • Journal of Hydrogen and New Energy
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 1998
  • Most of today's energy supply is obtained from fossil fuels. Despite of high energy density, higher store efficiency and long mileage, fossil fuels cause environmental pollution and their reserves are limited. In this study pure hydrogen gas and oxygen gas are burned without the emission of pollution. A gas turbine is used to obtain power. Water is injected into a combustor, which prevents overheating and recovers cooling heat. Excessively supplied water is recirculated. With variation of mass flow rate and equivalence ratio, the affection of water injection rate and the temperature of injected water on efficiency and power are experimented. Injected water gets cooling heat, is expanded from liquid to vapor and raises the thermal efficiency. It is enable to determine the rate of water injection, which makes the maximum power. The increase of temperature of water injection raises the efficiency of the system.

  • PDF

Morphologically Controlled Growth of Aluminum Nitride Nanostructures by the Carbothermal Reduction and Nitridation Method

  • Jung, Woo-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1563-1566
    • /
    • 2009
  • One-dimensional aluminum nitride (AlN) nanostructures were synthesized by calcining an Al(OH)(succinate) complex, which contained a very small amount of iron as a catalyst, under a mixed gas flow of nitrogen and CO (1 vol%). The complex decomposed into a homogeneous mixture of alumina and carbon at the molecular level, resulting in the lowering of the formation temperature of the AlN nanostructures. The morphology of the nanostructures such as nanocone, nanoneedle, nanowire, and nanobamboo was controlled by varying the reaction conditions, including the reaction atmosphere, reaction temperature, duration time, and ramping rate. Iron droplets were observed on the tips of the AlN nanostructures, strongly supporting that the nanostructures grow through the vapor-liquid-solid mechanism. The variation in the morphology of the nanostructures was well explained in terms of the relationship between the diffusion rate of AlN vapor into the iron droplets and the growth rate of the nanostructures.

Estimation of Shelf Life Distribution of Seasoned Soybean Sprouts Using the Probability of Bacillus cereus Contamination and Growth

  • Lee, Dong-Sun;Hwang, Keum-Jin;Seo, II;Park, Jin-Pyo;Paik, Hyun-Dong
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.773-777
    • /
    • 2006
  • Growth of Bacillus cereus was assessed during the storage of seasoned soybean sprouts at 0,5, 10, and $15^{\circ}C$. No lag time in its growth curve was observed and thus the specific growth rate of B. cereus in the exponential growth phase was estimated for bootstrapped microbial count data. The distribution of the specific growth rate could be explained by the BetaGeneral distribution function, and temperature dependence was described by the Ratkowsky square root model. The temperature dependence of the growth could be successfully incorporated into the differential equation of microbial growth to predict the B. cereus count on the seasoned soybean sprouts under fluctuating temperature conditions. Safe shelf lives with different probabilities to reach $10^5\;CFU/g$ were presented at four different temperatures, considering the variation in initial contamination and specific growth rate by the Monte Carlo method and 2-step bootstrapping, respectively. Safe shelf lives defined as the time with a probability of less than 0.1% of reaching the critical limit, were 13.4, 5.2, 3.6, and 2.8 days at 0, 5, 10, and $15^{\circ}C$, respectively.

Microstructure Evolution of Superalloy Nimonic 80A (초내열합금 Nimonic 80A의 미세조직 변화에 관한 연구)

  • Jeong H. S.;Cho J. R.;Park H. C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.174-177
    • /
    • 2004
  • The nickel-based alloy Nimonic 80A possesses strength, and corrosion, creep and oxidation resistance at high temperature. These products are used for aerospace, marine engineering and power generation, etc. The control of forging parameters such as strain, strain rate, temperature and holding time is important because the microstructure change in hot working affects the mechanical properties. It is necessary to understand the microstructure variation evolution. The microstructure change evolution occurs by recovery, recrystallization and grain growth phenomena. The dynamic recrystallization evolution has been studied in the temperature range $950-1250^{\circ}C$ and strain rate range $0.05-5s^{-1}$ using hot compression tests. The metadynamic recrystallization and grain growth evolution has been studied in the temperature range $950-1250^{\circ}C$ and strain rate range 0.05, $5s^{-1}$, holding time range 5, 10, 100, 600 sec using hot compression tests. Modeling equations are developed to represent the flow curve, recrystallized grain size, recrystallized fraction and grain growth phenomena by various tests. Parameters of modeling equation are expressed as a function of the Zener-Hollomon parameter. The modeling equation for grain growth is expressed as a function of initial grain size and holding time.

  • PDF

Long-Term Performance of Lab-Scale High Temperature Electrolysis(HTE) System for Hydrogen Production (Lab-scale 고온전기분해 수소생산시스템의 장기운전 성능평가)

  • Choi, Mi-Hwa;Choi, Jin-Hyeok;Lee, Tae-Hee;Yoo, Young-Sung;Koh, Jae-Hwa
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.5
    • /
    • pp.641-648
    • /
    • 2011
  • KEPRI (KEPCO Research Institute) designed and operated the lab-scale high temperature electrolysis (HTE) system for hydrogen production with $10{\times}10cm^2$ 5-cell stack at $750^{\circ}C$. The electrolysis cell consists of Ni-YSZ steam/hydrogen electrode, YSZ electrolyte and LSCF based perovskite as air side electrode. The active area of one cell is 92.16 $cm^2$. The hydrogen production system was operated for 2664 hours and the performance of electrolysis stack was measured by means of current variation with from 6 A to 28 A. The maximum hydrogen production rate and current efficiency was 47.33 NL/hr and 80.90% at 28 A, respectively. As the applied current increased, hydrogen production rate, current efficiency and the degradation rate of stack were increased respectively. From the result of stack performance, optimum operation current of this system was 24 A, considering current efficiencies and cell degradations.