• Title/Summary/Keyword: Temperature Variation Rate

Search Result 994, Processing Time 0.032 seconds

A Study of Thermal Performance Evaluation Index for Building (건물의 열성능 평가 지표에 관한 연구)

  • Kim, Mi-Hyun;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.67-75
    • /
    • 2007
  • This study intends to the adequacy inspection of the room temperature variation rate that is available in the building heat performance evaluation index, so we performed the sensitivity analysis about the room temperature variation rate and the energy consumption in the room. For these purpose, we supposed the models which are composed of the various window area, insulation thickness and ventilation rate. Then we analyzed the simulation using the ESP-r and Seoul weather data. In this research, the pattern of the increasing & decreasing rate of annual load according to the change of the various design factors is similar to the pattern of increasing & decreasing rate of not the K-values but the room temperature variation rate. Also we derive the optimum value of the various design factors and the room temperature variation rate in this analysis model. Further study is to be required the development of convenient tool to use in the real design.

The Study of the Variation of Strain Rate Sensitivity Index depending on the Strain and Microstructural Observations of AZ31 Mg Alloy Sheet (변형율에 따른 AZ31 합금의 변형율 속도 민감도 지수 변화와 미세조직 특성에 관한 연구)

  • Kim, D.O.;Kang, C.W.;Lee, S.Y.
    • Transactions of Materials Processing
    • /
    • v.20 no.7
    • /
    • pp.498-503
    • /
    • 2011
  • The strain rate sensitivity index, m, plays an important role in plastic deformation at elevated temperatures. It is affected by strain rate, temperature, and the microstructure of the material. The strain rate sensitivity index has been used as a constant in numerical analysis of plastic forming at a specified strain rate and temperature. However, the value of m varies as deformation proceeds at an elevated temperature and a certain strain rate. Thus, in this present study, the value of m has been characterized as a function of strain by multiple tensile jump tests for AZ31 magnesium alloy sheet, and the variation of m has been discussed in conjunction with the microstructural observations before and after deformation. The experimental results show that the variation of m is dependent on the temperature and strain rate. Grain growth with dynamic recrystallization also affects the variation of m.

Dynamic Constitutive Equations of Auto-Body Steel Sheets with the Variation of Temperature (I) - Dynamic Material Characteristics with the Variation of Temperature - (차체용 강판의 온도에 따른 동적 구성방정식에 관한 연구 (I) - 온도에 따른 동적 물성 특성 -)

  • Lee, Hee-Jong;Song, Jung-Han;Park, Sung-Ho;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.174-181
    • /
    • 2007
  • This paper is concerned with the thermo-mechanical behavior of steel sheet for an auto-body including temperature dependent strain rate sensitivity. In order to identify the temperature-dependent strain rate sensitivity of SPRC35R, SPRC45E and TRIP60, uniaxial tensile tests are performed with the variation of the strain rates from 0.001/sec to 200/sec and the variation of environmental temperatures from $-40^{\circ}C$ to $200^{\circ}C$. The thermo-mechanical response at the quasi-static state is obtained from the static tensile test and that at the intermediate strain rate is obtained from the high speed tensile test. Experimental results show that the variation of the flow stress and fracture elongation becomes sensitive to the temperature as the strain rate increases. It is observed that the dynamic strain aging occurs with TRIP60 at the temperature above $150^{\circ}C$. Results also indicate that the flow stress and tincture elongation of SPRC35R are more dependent on the changes of strain rates and temperature than those of SPRC45E and TRIP60.

A study on the strain rate sensitivity according to the temperature for steel sheets of an auto-body (차체용 강판의 온도에 따른 변형률 속도 민감도 연구)

  • Lee H. J.;Song J. H.;Cho S. S.;Kim S. B.;Huh H.;Park S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.148-151
    • /
    • 2005
  • This paper is concerned with the thermo-mechanical behavior and temperature dependent strain rate sensitivity of steel sheet for an auto-body. In order to Identify the temperature dependent strain rate sensitivity of SPRC35R and SPRC45E, uniaxial tension tests are performed with the variation of the strain rates from 0.001/sec to 200/sec, and the variation of environmental temperatures from $-40^{\circ}C\;to\;200^{\circ}C$. The thermo-mechanical response at the quasi-static state is obtained with the static tensile test and at the intermediate strain rate is from the high speed tensile test. The experimental results show that the strain rate sensitivity increases at low temperature and it decreases at high temperature. It means that as the strain rate getting increasing, the variation of flow stress is more sensitive on the temperature. The results also indicates that the material properties of SPRC35R is more depend on the changes of strain rates and temperature than those of SPRC45E.

  • PDF

A Study on the Temperature Variation Rate and Temperature Controlling Effect of Parks and Rivers in a City (도시 내 공원과 하천의 기온변화율과 기온완화효과에 관한 연구)

  • Lee, Kang-Guk;Kim, Tae-Woo;Seo, Won-Duck;Hong, Won-Hwa
    • KIEAE Journal
    • /
    • v.11 no.3
    • /
    • pp.3-9
    • /
    • 2011
  • For urban development, natural covering area such as urban green or river is more rapidly reducing than artificial surface covering area like concrete or asphalt, so thermal environment in a city is being drastically deteriorated. Recently, since people recognize the importance of parks or rivers in a city which play roles as an environmental buffer in it, many studies and policies consider how to improve the life quality of citizens and urban environment. This study aims to examine the status of thermal environment variation in the parks and rivers of the city which is the subject of this research and provide foundational data for urban environment plans through research on temperature variation rate and temperature controlling effect.

Influence of Seasonal Variation on Basal Metabolic Rates on Thermal Environments & Clothing Weight (생활환경온도와 착의량이 기초대사에 미치는 영향)

  • 이원자;침규남;김진선;박승순
    • The Research Journal of the Costume Culture
    • /
    • v.8 no.3
    • /
    • pp.374-386
    • /
    • 2000
  • This study investigated the relation between seasonal variation of total clothing weight, room, outdoor temperature and basal metabolic rate in man. The basal metabolic rate and total clothing weight, room temperature was determined seasonal for a period of two years and grouped four seasons. Subjects (adults volunteers) who live in seoul and mokpo were compose 120 subject The results were obtained as follows. Seasonal outdoor temperature was difference of seoul and. mokpo. But room temperature in apartments was a little difference than private house. Total-clothing weight is showed seasonal variations at the seoul, private house than at the mokpo, apartment.. The basal metabolic rate is suggested there in gender difference in the basal metabolic rate (P〈.001). The basal metabolic rate increased gradually with the peak of winter sespectively and deceased again todward summer. The difference of between basal metabolic rate in summer and winter was significant room temperature, of seoul and private house, and light total clothing weight.

  • PDF

An Environmental Effect on Productivity of Flounder Culture Farms (넙치양식장 환경에 따른 생산성에 관한 연구)

  • Eh, Youn-Yang
    • The Journal of Fisheries Business Administration
    • /
    • v.42 no.3
    • /
    • pp.79-93
    • /
    • 2011
  • Water temperature of Oliver flounder farm affects Oliver flounder growth and mortality rate. In laboratory experimental tanks, optimal water temperature was $22.5^{\circ}C$($21{\sim}24^{\circ}C$) and cultivatable water temperature was $12{\sim}28^{\circ}C$. The purpose of this study is to identify applicable and useful water temperature of Oliver flounder farm in case of actual farming. The data applied in the analysis was collected from Jeju island. In the study, various analytical methods including productivity analysis, regression analysis, statistical analysis were conducted for 13 Oliver flounder culture farms. The result of analysis can be summarized as follows : First, growth rate on the Oliver flounder culture farms was related to mean of water temperature, variation of water temperature and low water temperature. Second, survival rate on the Oliver flounder culture farms was related to mean of water temperature. In case of including Oliver flounder stocking density, defined as the surface area of Oliver flounder per $m^2$ of water surface area, survival rate strongly related to mean of water temperature, variation of water temperature, cultivating capability and stocking density. Third, production weight per $m^2$ of water surface area was strongly related to mean of water temperature, low water temperature and cultivating capability. Growth rate and survival rate was analyzed into mediate variable character.

A Study on Temperature Variation of Coil on BAF Annealing in HNx Atmospheric Gas (HNx 분위기가스중에서 BAF소둔시 코일의 온도변화에 관한 연구)

  • 전언찬;김순경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1227-1234
    • /
    • 1994
  • A cold spot temperature control system for the batch annealing furnace has been established in order to reduce energy consumption which is essential to improve productivity and stabilize the properties of products. A relationship between annealing cycle time and gas flow rate is developed and also for the variation of coil cold spot temperature with time during heating, and actual temperature measurements at mid-width of each coil during soaking. The results of the temperature variation effect on the cold rolled steel sheet batch annealing are as follows. (1) Cooling rate increasing gradually with increasing atmospheric gas flow, but heating rate is hardly increasing without atmospheric gas component change. (2) In case of short time heating, the slowest heating part is the center of B coil and in case of ling time heating, the low temperature point moves from the center of coil to inside coil. (3) The outside of top coil is the highest temperature point under heating, which becomes the lowest temperature point under cooling. (4) Soaking time determination depends on the input coil width, and soaking time for quality homogenization of 1214 mm width coil must be 2 hours longer than that of 914 mm width coil.

Regularities for temperature variation in subgrade of highway

  • Teltayev, Bagdat B.;Suppes, Elena A.
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.793-807
    • /
    • 2017
  • Regularities of temperature variation were determined in points of subgrade of the highway. Measurement of temperature was performed by special sensors, based on the effect of thermal resistance. Regular measurements of temperature were performed for two sections of the highway with asphalt concrete and cement concrete pavements for continuous period from November 2010 to March 2016. Multi-year experimental data, which we obtained, allowed establishing of peculiarities for temperature variation in points of subgrade in time and temperature distribution in the depth for annual cycle. Characteristics were determined for winter period-depth, duration and freezing rate, duration and defreezing rate for pavement and subgrade of the highway.

A Study on the Strain-Rate Sensitivity According to the Temperature for Steel Sheets of an Auto-Body (차체용 강판의 온도에 따른 변형률속도 민감도 연구)

  • Lee, H.J.;Song, J.H.;Cho, S.S.;Park, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.15 no.2 s.83
    • /
    • pp.132-137
    • /
    • 2006
  • This paper is concerned with the thermo-mechanical behavior including temperature dependent strain-rate sensitivity of steel sheet for an auto-body. In order to identify the temperature dependent strain-rate sensitivity of SPRC35R and SPRC45E, uniaxial tension tests are performed with the variation of the strain-rates from 0.001 /sec to 200 /sec at environmental temperatures varied from $-40^{\circ}C\;to\;200^{\circ}C$. The thermo-mechanical response at the quasi-static state is obtained with the static tensile test and at the intermediate strain-rate is from the high speed tensile test. Experimental results show that the strain-rate sensitivity increases at low temperature. It represents that as the strain-rate increases, the variation of flow stress becomes sensitive on the temperature. The results indicate that the flow stress of SPRC35R is more dependent on the changes of strain-rate and temperature than those of SPRC45E.