• Title/Summary/Keyword: Temperature Trend

Search Result 1,287, Processing Time 0.022 seconds

Representative Temperature Assessment for Improvement of Short-Term Load Forecasting Accuracy (단기 전력수요예측 정확도 개선을 위한 대표기온 산정방안)

  • Lim, Jong-Hun;Kim, Si-Yeon;Park, Jeong-Do;Song, Kyung-Bin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.6
    • /
    • pp.39-43
    • /
    • 2013
  • The current representative temperature selection method with five cities cannot reflect the sufficient regional climate characteristics. In this paper, the new representative temperature selection method is proposed with the consideration of eight representative cities. The proposed method considered the recent trend of power sales, the climate characteristics and population distribution to improve the accuracy of short-term load forecasting. Case study results for the accuracy of short-term load forecasting are compared for the traditional temperature weights of five cities and the proposed temperature weights of eight cities. The simulation results show that the proposed method provides more accurate results than the traditional method.

A Study on the Influence of Extreme Heat on Daily Mortality (폭염이 일사망자수에 미치는 영향에 관한 연구)

  • Park, Jong-Kil;Jung, Woo-Sik;Kim, Eun-Byul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.523-537
    • /
    • 2008
  • In Korea, the global warming leads to more frequent high temperature region. increasing the need for research into physical damage caused by high temperature. We therefore analyzed the differences of mortality, caused by extreme heat, among gender and age. We also examined the trend of mortality from high temperature-sensitive diseases. Women are more affected by exposure to high temperature than are men; People over 65 years old have higher mortality rate (1.5 times) than under 65. As for high temperature-related diseases, cerebrovascular disease was the number one cause of death, and chronic lower respiratory disease and cardiovascular disease followed.

A stochastic model for winter air-temperature of seoul area (서울지방 겨울철 기온의 확률모델)

  • 김해경;김태수
    • The Korean Journal of Applied Statistics
    • /
    • v.5 no.1
    • /
    • pp.59-80
    • /
    • 1992
  • This paper is concerned with the development and application of a stochastic model for winter air-temperature of Seoul area. The annual and interannual flucturations of the regression trend, periodicity and dependence of the air-temperature are analyzed based on the data during the past 30 years(1959-1989). A statistical procedure for using the stochastic model to predict the air-temperature is proposed. Some statistical characteristics of winter air-temperature including unusual air-temperature and Samhansaon are also discussed.

  • PDF

Research and Development of RFIC Technology in Smart Temperature Information Material

  • Chang, Chih-Yuan;Hung, San-Shan;Chang, Yu-Chueh;Peng, Yu-Fang
    • Journal of Construction Engineering and Project Management
    • /
    • v.1 no.1
    • /
    • pp.18-23
    • /
    • 2011
  • Conservation of energy and fuel is the trend in smart building design. Radio Frequency Integrated Circuit (RFIC) technology is often used in temperature sensing and signal transmission to manage indoor temperature, but it is rarely applied to the shell of the building. Heat retention and poor insulation in building shells are the largest causes of high energy consumption by indoor air conditioning. Through combining RFIC technology with temperature sensors, this study will develop smart temperature information material that can be embedded in concrete. In addition to accurately evaluating the effectiveness of shell insulation material, the already-designed Building Physiology Information System can monitor long-term temperature changes, leading to smarter building health management.

Construction of Agricultural Meteorological Data by the New Climate Change Scenario for Forecasting Agricultural Disaster - For 111 Agriculture Major Station - (농업재해 예측을 위한 신 기후변화 시나리오의 농업기상자료 구축 - 111개 농업주요지점을 대상으로 -)

  • Joo, Jin-Hwan;Jung, Nam-Su;Seo, Myung-Chul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.87-99
    • /
    • 2013
  • For analysis of climate change effects on agriculture, precise agricultural meteorological data are needed to target period and site. In this study, agricultural meteorological data under new climate change scenario (RCP 8.5) are constructed from 2011 to 2099 in 111 agriculture major station suggested by Rural Development Administration (RDA). For verifying constructed data, comparison with field survey data in Suwon shows same trend in maximum temperature, minimum temperature, average temperature, and precipitation in 2011. Also comparison with normals of daily data in 2025, 2055, and 2085 shows reliability of constructed data. In analysis of constructed data, we can calculate sum of days over temperature and under temperature. Results effectively show the change of average temperature in each region and odd days of precipitation which means flood and dry days in target region.

RESEARCH AND DEVELOPMENT OF RFIC TECHNOLOGY IN SMART TEMPERATURE INFORMATION MATERIAL

  • Chih-Yuan Chang;San-Shan Hung;Yu-Chueh Chang;Yu-Fang Peng
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.480-486
    • /
    • 2011
  • Conservation of energy and fuel is the trend in smart building design. Radio Frequency Integrated Circuit (RFIC) technology is often used in temperature sensing and signal transmission to manage indoor temperature, but it is rarely applied to the shell of the building. Heat retention and poor insulation in building shells are the largest causes of high energy consumption by indoor air conditioning. Through combining RFIC technology with temperature sensors, this study will develop smart temperature information material that can be embedded in concrete. In addition to accurately evaluating the effectiveness of shell insulation material, the already-designed Building Physiology Information System can monitor long-term temperature changes, leading to smarter building health management.

  • PDF

Photosynthesis, Chlorophyll Contents and Leaf Characteristics of Illicium anisatum under Different Shading Treatments (비음처리에 따른 붓순나무의 광합성, 엽록소 함량 및 엽 특성)

  • Son, Seog-Gu;Han, Jin-Gyu;Kim, Chan-Soo;Hwang, Suk-In;Jeong, Jin-Heon;Lee, Sung-Gie
    • Journal of Environmental Science International
    • /
    • v.16 no.11
    • /
    • pp.1313-1318
    • /
    • 2007
  • Illicium anisatum was bred under four different light intensity. Those condition were full sunlight(PPFD $1600{\mu} mol\;m^{-2}s^{-1}$), 30% treatment(PPFD $400{\mu} mol\;m^{-2}s^{-1}$), 50% treatment(PPFD $250{\mu} mol\;m^{-2}s^{-1}$) and 70% treatment(PPFD $100{\mu} mol\;m^{-2}s^{-1}$), respectively. Chlorophyll a and b were increased according to decrease of light intensity. Thirty percent and 50% treatment had not significant different in chlorophyll a and b. Thirty percent treatment was shown the best photosynthetic activity through invested photosynthetic rate, intercellular $CO_2$ concentration and water use efficiency. Photosynthetic activity trend of 50% treatment was similar to 30% treatment. Seventy percent treatment was shown the best photosynthetic activity at low light intensity but that was decreased to lower value than 30% and 50% treatment under high intensity. Control, bred full sunlight, was shown the worst photosynthetic activity at measured all light intensity. That result could imply that was caused by photo-inhibition because of long term exposed of shade tolerant plant at high light intensity. Leaf characteristics had not significant different in leaf length, width and area but leaf dry weight had similar trend to photosynthetic activity.

Climate Change and Urban Air Temperature Increase in Korean Peninsula (기후변화와 한반도 도시지역의 기온 증가)

  • Oh, Sung-Nam;Ju, Ok-Jung;Moon, Yung-Su;Lee, Kyoo-Seock
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.2
    • /
    • pp.169-177
    • /
    • 2010
  • One of the most obvious climatic manifestations of urbanization in Korea is a trend towards higher air temperature. The trends of long-term annual temperature generally well describe the warming of urban areas. The increase of air temperature in urban area has been observed to the present since the meteorological observations in Korea began. The objective of this study is to explore the actual increase and the regional long-term trends of air temperature attributed to urbanization in the Korean Peninsula. Therefore, temperatures of the selected urban areas were compared with that of the surrounding rural areas, with the results varying by the application of the estimates of each region. The second objective is to separate the long-term trend of surface air temperature of global warming from urbanization and to find the actual temperature increase from urbanization in Korean peninsula. For the data analysis, daily air temperatures observed by the Korea Meteorological Administration (KMA) during between from 1961 and 2005 were used at five rural sites and cities. The re-analyzed surface air temperatures by the National Centers for Environmental Prediction (NCEP) was also carried out to compare the result from the observed air temperature in the Korean climate domain. In this study, the urban areas in Korea showed high increase rate of air temperature with $0.4^{\circ}C$ per decade during past 50 year period, while rural sites as Chupungryung with the $0.2^{\circ}C$ decadal increase rate. The analyses reflect that the urban area shows the high rate of temperature increase with $1.39^{\circ}C$ of regression value at the urban area, Seoul, and $0.43^{\circ}C$ at the rural site, Chupungnyeong during the period of 30 years. The temperature increas due to the urbanization only showed the increase range between $0.44^{\circ}C$ and $0.86^{\circ}C$, and the observed decrease in diurnal temperature range at five urban areas during the 30 years period.

Analyzing the Variability of Spring Precipitation and Rainfall Effectiveness According to the Regional Characteristics (봄철 강수량 및 강수효율의 지역적 특성별 변화분석)

  • Kim, Gwang-Seob;Kim, Jong-Pil;Lee, Gi-Chun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.3
    • /
    • pp.1-11
    • /
    • 2011
  • The temporal variability of spring (March, April, May) monthly precipitation, precipitation effectiveness, monthly maximum precipitation, monthly precipitation of different durations, and the precipitation days over several threshold (i.e. 0, 10, 20, 30, 40, and 50 mm/day) of 59 weather stations between 1973 and 2009 were analyzed. Also to analyze the regional characteristics of temporal variability, 59 weather stations were classified by elevations, latitudes, longitudes, river basins, inland or shore (east sea, south sea, west sea) area and the level of urbanization. Results demonstrated that trends of variables increase in April and decrease in May except precipitation day. Overall trend of precipitation amount and precipitation effectiveness is same but precipitation effectiveness of several sites decrease despite the trend of precipitation amount increases which may be caused by the air temperature increase. Therefore more effective water supply strategy is essential for Spring season. Regional characteristics of Spring precipitation variability can be summarized that increase trend during May become stronger with the increase of latitude and elevation which is similar to that of Summer season. The temporal variability of variables showed different behaviors according to river basins, inland or shore (east sea, south sea, west sea) area and the level of urbanization.

Assessment of GCM and Scenario Uncertainties under Future Climate Change Conditions

  • Jang, S.;Hwang, M.;Park, J.;Lim, K.
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.658-659
    • /
    • 2015
  • GCM and scenario uncertainties are first investigated for 5 major watersheds (Han River, Paldang dam, Namhan River, Bukhan River and Imjin River watersheds). As a result of this study, it is found that CCSM3-based annual precipitation increases linearly with respect to the 10-year moving average values while CSIRO-based precipitation does not show much of trend. The results from annual DJF mean precipitation show a similar trend with respect to their 10-year moving average values. Both CCSM3- and CSIRO-based annual JJA mean precipitation do not show much of trend toward 21st century. In general, CCSM3-based precipitation values are slightly higher than CSIRO-based values with respect to their annual and annual JJA mean precipitation values, but CSIRO-based annual DJF mean precipitation values are slightly higher than CCSM3-based values. In case of mean air temperature between CCSM3 and CSIRO during 21st century, all of results show a clear trend in warming with the passage of time for 5 watersheds. However the upward trends from CCSM3-based values slow down toward end of 21stcentury while CSRIO-based values increases almost linearly.

  • PDF