• 제목/요약/키워드: Temperature Sensor Sensitivity

검색결과 530건 처리시간 0.03초

A PDMS-Coated Optical Fiber Bragg Grating Sensor for Enhancing Temperature Sensitivity

  • Park, Chang-Sub;Joo, Kyung-Il;Kang, Shin-Won;Kim, Hak-Rin
    • Journal of the Optical Society of Korea
    • /
    • 제15권4호
    • /
    • pp.329-334
    • /
    • 2011
  • We proposed a poly-dimethylsiloxane (PDMS)-coated fiber Bragg grating (FBG) temperature sensor for enhancing temperature sensitivity. By embedding the bare FBG in a temperature-sensitive elastomeric polymer, the temperature sensitivity of the proposed structure could be effectively improved by 4.2 times higher than those of the conventional bare-type FBG sensors due to the high thermal expansion coefficient of the PDMS. We analyzed the temperature-sensitivity enhancement effect with the increased Bragg wavelength shift in our structure and dependence on the temperature sensitivity with respect to the cross-section area of the PDMS.

The thermal effect on electrical capacitance sensor for two-phase flow monitoring

  • Altabey, Wael A.
    • Structural Monitoring and Maintenance
    • /
    • 제3권4호
    • /
    • pp.335-347
    • /
    • 2016
  • One of major errors in flow rate measurement for two-phase flow using an Electrical Capacitance Sensor (ECS) concerns sensor sensitivity under temperature raise. The thermal effect on electrical capacitance sensor (ECS) system for air-water two-phase flow monitoring include sensor sensitivity, capacitance measurements, capacitance change and node potential distribution is reported in this paper. The rules of 12-electrode sensor parameters such as capacitance, capacitance change, and change rate of capacitance and sensitivity map the basis of Air-water two-phase flow permittivity distribution and temperature raise are discussed by ANSYS and MATLAB, which are combined to simulate sensor characteristic. The cross-sectional void fraction as a function of temperature is determined from the scripting capabilities in ANSYS simulation. The results show that the temperature raise had a detrimental effect on the electrodes sensitivity and sensitive domain of electrodes. The FE results are in excellent agreement with an experimental result available in the literature, thus validating the accuracy and reliability of the proposed flow rate measurement system.

An ITO/Au/ITO Thin Film Gas Sensor for Methanol Detection at Room Temperature

  • Jeong, Cheol-Woo;Shin, Chang-Ho;Kim, Dae-Il;Chae, Joo-Hyun;Kim, Yu-Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권2호
    • /
    • pp.77-80
    • /
    • 2010
  • Indium tin oxide (ITO) films with a 5 nm thick Au interlayer were prepared on glass substrates. The effects of the Au interlayer on the gas sensitivity for detecting methanol vapors were investigated at room temperature. The conductivity of the film sensor increased upon exposure to methanol vapor and the sensitivity also increased proportionally with the methanol vapor concentration. In terms of the sensitivity measurements, the ITO film sensor with an Au interlayer shows a higher sensitivity than that of the conventional ITO film sensor. This approach is promising in gaining improvement in the performance of ITO gas sensors used for the detection of methanol vapor at room temperature.

High Sensitive Fiber Optic Temperature Sensor Based on a Side-polished Single-mode Fiber Coupled to a Tapered Multimode Overlay Waveguide

  • Prerana, Prerana;Varshney, Ravendra Kumar;Pal, Bishnu Pada;Nagaraju, Bezwada
    • Journal of the Optical Society of Korea
    • /
    • 제14권4호
    • /
    • pp.337-341
    • /
    • 2010
  • A high sensitivity fiber optic temperature sensor based on a side-polished fiber (SPF) coupled to a tapered multimode overlay waveguide (MMOW) is proposed and studied. Both tapered and non-tapered MMOW were considered to study the effect of tapering of MMOW on the characteristics of the device and to investigate the criticality of the uniformity of the multimode overlay waveguide over the SPF. Present study shows that tapering of the MMOW can be used to tune the desired wavelength range without any loss in the sensitivity. Sensitivity up to 9 nm/$^{\circ}C$ within the temperature range of 25 to $100^{\circ}C$ can be achieved with the proposed sensor, almost 6 times higher compared even to state-of-the-art high-sensitivity grating-based fiber optic temperature sensors.

Humidity and Temperature Response Characteristics of Optical Fiber Dislocation Fusion Sensor Coated with Graphene Quantum Dots

  • Dailin Li;Xiaodan Yu;Ning Wang;Wenting Liu;Shiqi Liu;Liang Xu;Dong Fang;Huapeng Yu
    • Current Optics and Photonics
    • /
    • 제7권5호
    • /
    • pp.504-510
    • /
    • 2023
  • An optical fiber dislocation fusion humidity sensor coated with graphene quantum dots is investigated. A Mach-Zehnder interferometer is fabricated with three dislocated single-mode fibers with graphene quantum dots coating humidity-sensitive materials. Humidity response experiments showed a good linear response and high sensitivity with easy fabrication and low-cost materials. From 22% to 98% RH, the humidity response sensitivity of the sensor is 0.24 dB/% RH, with 0.9825 linearity. To investigate the cross-response of humidity and temperature, temperature response experiments are conducted. From 30 ℃ to 70 ℃, the results showed 0.02 dB/℃ sensitivity and 0.9824 linearity. The humidity response experimental curve is compared with the temperature experimental curve. The big difference between humidity sensitivity and temperature sensitivity is very helpful to solve the cross-response of humidity and temperature. The influence of temperature fluctuations in humidity measurements is not obvious.

고온용 고감도 실리콘 홀 센서의 제작 및 특성 (Fabrication and Characteristics of High-sensitivity Si Hall Sensors for High-temperature Applications)

  • 정귀상;노상수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.565-568
    • /
    • 2000
  • This paper describes on the temperature characteristics of a SDB(silicon-wafer direct bonding) SOI(silicon-on-insulator) Hall sensor. Using the buried oxide $SiO_2$ as a dielectrical isolation layer, a SDB SOI Hall sensor without pn junction isolation has been fabricated on the Si/$SiO_2$/Si structure. The Hall voltage and the sensitivity of the implemented SOI Hall sensor show good linearity with respect to the applied magnetic flux density and supplied current. In the temperature range of 25 to $300^{\circ}C$, the shifts of TCO(temperature coefficient of the offset voltage) and TCS(temperature coefficient of the product sensitivity) are less than $\pm 6.7$$\times$$10^{-3}$/$^{\circ}C$ and $\pm 8.2$$\times$$10^{-4}$/$^{\circ}C$respectively. These results indicate that the SDB SOI structure has potential for the development of a silicon Hall sensor with a high-sensitivity and hip high-temperature operation.

  • PDF

고온용 실리콘 압력센서 개발 (Development of the High Temperature Silicon Pressure Sensor)

  • 김미목;남태철;이영태
    • 센서학회지
    • /
    • 제13권3호
    • /
    • pp.175-181
    • /
    • 2004
  • A pressure sensor for high temperature was fabricated by using a SDB(Silicon-Direct-Bonding) wafer with a Si/$SiO_{2}$/ Si structure. High pressure sensitivity was shown from the sensor using a single crystal silicon of the first layer as a piezoresistive layer. It also was made feasible to use under the high temperature as of over $120^{\circ}C$, which is generally known as the critical temperature for the general silicon sensor, by isolating the piezoresistive layer dielectrically and thermally from the silicon substrate with a silicon dioxide layer of the second layer. The pressure sensor fabricated in this research showed very high sensitivity as of $183.6{\mu}V/V{\cdot}kPa$, and its characteristics also showed an excellent linearity with low hysteresis. This sensor was usable up to the high temperature range of $300^{\circ}C$.

양방향 반사 지연선을 이용한 무선, 무전원 SAW 기반 온, 습도 센서 개발 (Development of a Wireless, Battery-free SAW-based Temperature and Humidity Sensor incorporating a Bidirectional Reflective Delay Line)

  • 임천배;이기근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1515_1516
    • /
    • 2009
  • A 440MHz wireless and passive surface acoustic wave (SAW) based micro-sensor was developed for simultaneous measurement of temperature and humidity. The developed sensor is composed of a SAW reflective delay lines structured by an IDT (Inter-Digital Transducer), four reflectors and humidity sensitive film (polyimide). Polyimide was dry-ecthed by RIE (Reactive Ion Etching) to obtain high roughness, which gives the large reaction area resulting in high sensitivity. In wireless testing using a network analyzer, sharp reflection peaks with high S/N ratio, small signal attenuation, and few spurious peaks were observed in the time domain. High sensitivity towards the temperature and humidiy were also observed in the large concentration range. The obtained sensitivity was $16.8^{\circ}/^{\circ}C$ for temperature sensor and $15.8^{\circ}$/%RH for humidity sensor.

  • PDF

금속 촉매가 ZnO 박막을 감지물질로 이용한 NO 센서의 특성에 미치는 영향 (Effects of metal catalysts on the characteristics of NO sensor using ZnO thin film as sensing material)

  • 정귀상;정재민
    • 센서학회지
    • /
    • 제19권1호
    • /
    • pp.58-61
    • /
    • 2010
  • This paper describes the fabrication and characteristics of NO sensor using ZnO thin film by RF magnetron sputter system. The sensitivity, working temperature, and response time of sputtered pure ZnO thin film and added catalysts such as Pt, Pd, Al, Ti on those films were measured and analyzed. The sensitivity of pure ZnO thin film at working temperature of $300^{\circ}C$ is 0.875 in NO gas concentration of 0.046 ppm. At same volume of the gas in chamber, measuring sensitivity of 1.87 at $250^{\circ}C$ was the case of Pt/ZnO thin film. The ZnO thin films added with catalyst materials were showed higher sensitivity, lower working temperature and faster adsorption characteristics to NO gas than pure ZnO thin film.

Fiber-Optic Temperature Sensor Based on Single Mode Fused Fiber Coupler

  • Kim, Kwang-Taek;Park, Kiu-Ha
    • Journal of the Optical Society of Korea
    • /
    • 제12권3호
    • /
    • pp.152-156
    • /
    • 2008
  • This paper reports a fiber-optic temperature sensor using a single mode fused fiber coupler incorporating a thermo-optic external medium. The spectral transmission was altered by changing the refractive index of the external thermo-optic medium. A theoretical and experimental investigation was carried out with the aim of achieving high sensitivity. The measured sensitivity for the environmental temperature was as high as -1.5 $nm/^{\circ}C$.