• Title/Summary/Keyword: Temperature Rise rate

Search Result 359, Processing Time 0.037 seconds

A Study on Minimizing of Condenser Pressure Loss according to the Temperature Rise of the Seawater for Korean Standard Coal-fired Power Plants (표준석탄화력 발전소 해수온도 상승에 따른 복수기 압력 손실 최소화 방안)

  • An, Hyo-Yoel;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.11 no.2
    • /
    • pp.45-51
    • /
    • 2015
  • In this paper, studied condenser operating management which is affecting power plants efficiency considering the cost of poor quality. Sea water temperature and condenser pressure have clear correlation in S power plants. As the sea water temperature changes, condenser pressure changed -1.7~+20 mmHg from design condenser pressure(38.1 mmHg). Use the heat rate correction curve from manufactory company, realized that efficiency and cost of poor quality changed 0.0201%, 12,830 won/h at Unit #1,2 but 0.0155%, 9,832 won/h when condenser pressure 1 mmHg rise. Also, checked that it is changed depend on seasonal corresponding operation, plant ageing and the point of preventive maintenance like overhaul maintenance. This study said if we considered complying with management range and planning overhaul maintenance, then it could help reducing operating maintenance losses minimum 2.5 billion won per 1 year (case : Unit #1, forty days maintenance).

  • PDF

PHYSIOLOGICAL RESPONSES, FEED INTAKE, URINE VOLUME AND SERUM OSMOLALITY OF AARDI GOATS DEPRIVED OF WATER DURING SPRING AND SUMMER

  • El-Nouty, F.D.;Al-Haidary, A.A.;Basmaeil, S.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.3 no.4
    • /
    • pp.331-336
    • /
    • 1990
  • In order to evaluate the adaptability of Aardi goats to arid environment, 5 Aardi bucks were deprived of water for four days during spring and summer seasons. The rise in average maximum ambient temperature from $24.8^{\circ}C$ in spring to $35.8^{\circ}C$ in summer caused a significant rise in rectal temperature ($0.3^{\circ}C$), respiratory rate (62%), serum osmolaity (8%) and serum sodium concentration (17%). While, it resulted in a significant decline in dry matter intake (50%), urine volume (74%) and fecal water excretion (60%) compared with their values in spring, but had no significant effect on the volume of drinking water. At the end of the 4-days deprivation period during spring, respiratory rate, dry matter intake and urine volume were reduced by 18, 77 and 91% relative to their average in control goats. The corresponding reduction in summer were 58, 100 and 100%. Serum osmolaity was risen by 15% in spring deprived goats and 29% in summer deprived goats. Rectal temperature rose by a mean value of $1.3^{\circ}C$ only in goats deprived of water in summer. Percent of moisture in the feces declined from 64 in control goats, to 24% in water deprived goats during spring season. The corresponding values in summer were 25 and 6%. These responses of Aardi goats deprived of water in summer indicate that they possess a water economy mechanism enable them to tolerate infrequent drinking in hot-arid environment.

Nonequilibrium Heat Transfer Characteristics During Ultrafast Pulse Laser Heating of a Silicon Microstructure

  • Lee Seong Hyuk
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1378-1389
    • /
    • 2005
  • This work provides the fundamental knowledge of energy transport characteristics during very short-pulse laser heating of semiconductors from a microscopic viewpoint. Based on the self-consistent hydrodynamic equations, in-situ interactions between carriers, optical phonons, and acoustic phonons are simulated to figure out energy transport mechanism during ultrafast pulse laser heating of a silicon substrate through the detailed information on the time and spatial evolutions of each temperature for carriers, longitudinal optical (LO) phonons, acoustic phonons. It is found that nonequilibrium between LO phonons and acoustic phonons should be considered for ultrafast pulse laser heating problem, two-peak structures become apparently present for the subpicosecond pulses because of the Auger heating. A substantial increase in carrier temperature is observed for lasers with a few picosecond pulse duration, whereas the temperature rise of acoustic and phonon temperatures is relatively small with decreasing laser pulse widths. A slight lagging behavior is observed due to the differences in relaxation times and heat capacities between two different phonons. Moreover, the laser fluence has a significant effect on the decaying rate of the Auger recombination.

A Study on the Heat Disspation of Air Compressor Cylinder Head by the Finite Elements Method (유한요소법에 의한 공기압축기 실린더 헤드의 방열에 관한 연구)

  • Lee, Chang-Sik
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.8 no.2
    • /
    • pp.73-80
    • /
    • 1979
  • This study describes the conduction of heat in the discharge head of air compressor. It also gives a base for a finite elements analysis of two dimenional steady -state heat conduction in the cylinder head of air cooled type reciprocating compressor. Using a single cylinder compressor operated at a given speed, tests were made observing outside temperature, final pressure and discharge temperature of air in cylinder head. As a result, the following were obtained : (1) The rate oi heat flow from the inner surface of discharge head to outside wall reach 46. 328 kcal /h at a speed of 796rpm under the constant temperature of inlet air. (2) The compression work of air increase in accordance with temperature rise of inlet air.

  • PDF

Analysis on the Characteristics of Ventilation and Cooling for Greenhouses Constructed in Reclaimed Lands (간척지 온실의 환기 및 냉방 특성 분석)

  • Nam, Sang-Woon;Shin, Hyun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.181-187
    • /
    • 2017
  • The purpose of this study was to provide basic data for development of environmental design technology for greenhouses constructed in reclaimed lands. The climatic conditions around seven major reclaimed land areas with a plan to install advanced horticultural complexes in Korea were analyzed. The characteristics of natural ventilation and temperature rise through the thermal environment measurement of the greenhouse in Saemangeum were analyzed. The part to be applied to the environmental design of the greenhouses in reclaimed lands were reviewed. Results of comparing the ventilation rate of the greenhouse according to the presence or absence of plants showed the greenhouse with plants had the lower ventilation rate, but the smaller rise of indoor temperature due to the evapotranspiration of plants. In the greenhouse with plants, the number of air changes was in the range of 0.3 to 0.9 volumes/min and the average was 0.7 volumes/min. The rise of indoor temperature relative to outdoor temperature was in the range of 1 to $5^{\circ}C$ and the average $2.5^{\circ}C$. The natural ventilation performance of the experimental greenhouse constructed in the reclaimed land almost satisfied the recommended ventilation rate in summer and the rise of indoor temperature relative to outdoor temperature did not deviate considerably from the cultivation environment of plants. Therefore, it was determined that the greenhouse cultivation in Saemangeum reclaimed land is possible with only natural ventilation systems without cooling facilities. As the reclaimed land is located in the seaside, the wind is stronger than the inland area, and the fog is frequent. This strong wind speed increases the ventilation rate of greenhouses, which is considered to be a factor for reducing the cooling load. In addition, since the fog duration is remarkably longer than that of inland area, the seasonal cooling load is expected to decrease, which is considered to be advantageous in terms of the operation cost of cooling facilities.

An Experimental Investigation on Fire Characteristics of Light Oil & Methanol for Spilled Surface (경유와 메탄올의 유출표면에 따른 화재특성에 관한 실험적 고찰)

  • Lee, Jung-Yon;Jung, Ki-Chang;Kim, Hong
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.103-108
    • /
    • 2010
  • In this study, tank truck incidents of road transport of hazardous materials to experimental investigated the potential fire hazard. Real scale fire was to perform experiments for on this qualitative and quantitative data collection and analysis. Particularly affected by radiant heat from the flames caused and damage estimates range investigated accordingly. Flame temperature, internal temperature of tank and emitted radiation from the flames was investigated. The flame of light oil spill caused a fire at a temperature of about $300^{\circ}C$ high in comparison with the methanol by combustion of diesel and methanol, according to the difference, the flame duration changes varies depending on the Burning rate, amount of radiant heat flux from light oil fire was 4 times increases compared with fire of methanol. Depending on spill locations(kinds of road surfaces, absorbing rate) and the longer the duration of the flame important factors for the internal temperature of tank truck rise was found. Dirt roads than paved road accident in a fire caused by leakage of hazardous was could the higher the damaged. Therefor, Fire suppression activities should be required in particular to be around.

Supercritical $CO_2$ Extraction of Whole Berry Oil from Sea Buckthorn ($Hippopha\ddot{e}$ rhamnoides var. sp) Fruit

  • Xu, Xiang;Gao, Yanxiang;Liu, Guangmin;Zheng, Yuanyuan;Zhao, Jian
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.470-474
    • /
    • 2008
  • The whole berry, pulp, and seed of sea buckthorn fruit were extracted with supercritical $CO_2$ to produce edible oils. The effects of extraction pressure, temperature, and $CO_2$ flow rate on the oil yield and extraction rate were investigated, and the fatty acid composition, tocopherol, and carotenoid contents of the oils were compared. The results showed that the extraction rate was affected by pressure, temperature, and $CO_2$ flow rate and, in general, the yield increased with a rise in any of the 3 variables. Fatty acids in the whole berry and pulp oil were dominated by monounsaturated fatty acids (>64%), followed by saturated fatty acids (about 30%). In contrast, fatty acids in the seed oil consisted mainly of polyunsaturated (>60%) and monounsaturated fatty acids (>24%). The seed oil had a slightly higher content of tocopherols, but a much lower content of carotenoids, compared with the whole berry or pulp oil.

Rapid Energy Transfer Mechanism of F Electronic Excitation to the Vibration of Randomly Distributed $OH^- in KCI

  • 장두전;아철승
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.10
    • /
    • pp.1063-1068
    • /
    • 1998
  • The nature of F electronic excitation energy transfer to OH- vibrational levels in KCl crystals is the exchange interaction, although the transfer process exhibits three temporally distinguishable components depending on the distance between excited F center and OH-. The critical distance as well as rate of the major energy transfer process in randomly distributed samples increases rapidly as OH- librational motions become active with temperature rise. The excited state character introduced into the OH- ground electronic state by perturbation is essential for the exchange interaction. The perturbation is brought about by the expanded electron cloud of excited F center for OH- associated to F center, whereas by librations and lattice vibrations perpendicular to the bond axis for isolated OH- . F excitation quenching efficiency by OH- is dependent on the variation of the critical distance rather than the rate as the rate is much faster than the normal F bleach recovery rate.

Estimation of Changes in Full Bloom Date of 'Niitaka' Pear Tree with Global Warming (기온 상승에 따른 '신고' 배나무의 만개일 변동 예측)

  • Han, Jeom-Hwa;Cho, Kwang-Sik;Choi, Jang-Jun;Hwang, Hae-Sung;Kim, Chang-Gook;Kim, Tae-Choon
    • Horticultural Science & Technology
    • /
    • v.28 no.6
    • /
    • pp.937-941
    • /
    • 2010
  • This study investigated the effect of global warming on full bloom date (FBD) of 'Niitaka' pear ($Pyrus$ $pyrifolia$ Nakai) tree by calculating the development stage index by hourly temperatures recorded at Pear Research Station, estimating the distribution of average FBD and the change of FBD according to temperature rising by integrating development rate at 67 locations in Korea Meteorological Administration site. Development stage index of 'Niitaka' pear tree was 0.9593 at Naju location. Differences between full bloom dates observed at Cheonan region and predictions by development stage index were 0-7 days, and matched year was 35.3%. FBDs of 67 locations were distributed from April 4 to May 28. When yearly temperature was raised 1, 2, 3, 4, and $5^{\circ}C$ at 67 locations, predicted FBD was accelerated at most of the locations. However, FBD decelerated at south coast locations from $3^{\circ}C$ rise and did not bloom at 'Gosan', 'Seogwipo', and 'Jeju' locations from $4^{\circ}C$ rise. When monthly temperature was raised 1, 3, and $5^{\circ}C$ at 67 locations, predicted FBD was the most accelerated at March temperature rise, and followed by April, February, January and December. Therefore, global warming will cause acceleration of the full bloom date at pear production areas in Korea.

A study on the efficiency advancement for evacuation of the crews by ship structural improvement (선박 구조 개선을 통한 승무원의 피난 효율 향상을 위한 연구)

  • Kim, Wonouk;Lee, Myoungho;Kim, Jongsu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.342-348
    • /
    • 2014
  • Onshore great fires can normally be extinguished by firefighters using special firefighting equipment and its suitable method. However, offshore fires on the ships are to be extinguished by the crew without any supports from the onshore. Also, crews working on board are exposed to high risk of emergency evacuation due to the complicated structure arrangement of the ships and different accident types such as fire and ship collisions. As most of damage and loss of life in fire are associated with suffocation, shortening of evacuation time is an important factor to improve a survival rate. In this study, visibility in the accommodation area is analyzed by using the temperature and smoke flow which are obtained by the Fire Dynamic Simulator(FDS) as a Three-Dimensional Fire Analysis program to understand the survival rate of the crew upon the fire. The fire doors for most of ships are designed to close automatically when the fire alarm is activated. These automatic closing of the fire doors is a very effective system to delay the spread of flame and smoke flow for the unmanned spaces of the fire protected area. However, if the crew cannot escape within the estimated time, the crew inside the fire protected area will be damaged a lot. In this paper, the comparative analysis between the evacuations by using the fire door from the fire protected area and the suggested fire shielding structure in this study is carried out by the smoke flow rate and the temperature rise rate.