• Title/Summary/Keyword: Temperature Overshoot

Search Result 67, Processing Time 0.027 seconds

Water relations of plants under environmental stresses: role of aquaporins

  • Kang, H.S.;Ahn, S.J.;Hong, S.W.;Chung, G.C.
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.71-80
    • /
    • 2005
  • Effects of low temperature ($8^{\circ}C$) on the hydraulic conductivity of young roots of a chilling-sensitive (cucumber; Cucumis sativus L.) and a chilling-resistant (figleaf gourd; Cucurbita ficifolia Bouche) crop have been measured at the levels of whole root systems (root hydraulic conductivity, $Lp_r$) and of individual cortical cells (cell hydraulic conductivity, Lp). In figleaf gourd, there was a reduction only in hydrostatic $Lp_r$ but not in osmotic $Lp_r$ suggesting that the activity of water channels was not much affected by low root temperature (LRT)treatment in this species. Changes in cell Lp in response to chilling and recovery were similar asroot level, although they were more intense at the root level. Roots of figleaf gourd recovered better from LRT treatment than those of cucumber. In figleaf gourd, recovery (both at the root and cell level) often resulted in Lp and $Lp_r$ values which were even bigger than the original, i.e. there was an overshoot in hydraulic conductivity. These effects were larger forosmotic (representing the cell-to-cell passage of water) than for hydrostatic $Lp_r$. After a short term (1 d) exposure to $8\;^{\circ}C$ followed by 1 d at $20\;^{\circ}C$, hydrostatic $Lp_r$ of cucumber nearly recovered and that of figleaf gourd still remained higher due to the overshoot. On the contrary, osmotic $Lp_r$ and cell Lp in both species remained high by a factor of 3 as compared to the control, possibly due to an increased activity of water channels. After pre-conditioning of roots at LRT, increased hydraulic conductivitywas completely inhibited by $HgCl_2$ at both the root and cell levels. Different from figleaf gourd, recovery from chilling was not complete in cucumber after longer exposure to LRT. It is concluded that at LRT, both changes in the activity of aquaporins and alterations of root anatomy determine the water uptake in both species. To better understand the aquaporin function in plants under various stress conditions, we examined the transgenic Arabidopsisand tobacco plants that constitutively overexpress ArabidopsisPIP1;4 or PIP2;5 under various abiotic stress conditions. No significant differences in growth rates were found between the transgenic and wild-type plants under favorable growth conditions. By contrast, overexpression of PIP1;4 or PIP2;5 had a negative effect on seed germination and seedling growth under drought stress, whereas it had a positive effect under cold stress and no effect under salt stress. Measurement of water transport by cell pressure probe revealed that these observed phenotypes under different stress conditions were closely correlated with the ability of water transport by each aquaporin in the transgenic plants. Together, our results demonstrate that PIP-type aquaporins play roles in seed germination, seedling growth, and stress response of Arabidopsis and tobacco plants under various stress conditions, and emphasize the importance of a single aquaporin-mediated water transport in these cellular processes.

  • PDF

A LQR Controller Design for Performance Optimization of Medium Scale Commercial Aircraft Turbofan Engine (II) (중형항공기용 터보팬 엔진의 성능최적화를 위한 LQR 제어기 설계 (II))

  • 공창덕;기자영
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.3
    • /
    • pp.99-106
    • /
    • 1998
  • The performance of the turbofan engine, a medium scale civil aircraft which has been developing in Rep. of Korea, was analyzed and the control scheme for optimization the performance was studied. The dynamic and real-time linear simulation was performed in the previous study The result was that the fuel scedule of the step increase overshoot the limit temperature(3105 $^{\cire}R$) of the high pressure turbine and got small surge margine of the high pressure compressor. Therefore a control scheme such as the LQR(Linear Quadratic Regulator) was applied to optimizing the performance in this studies. The linear model was expected for designing controller and the real time linear model was developed to be closed to nonlinear simulation results. The system matrices were derived from sampling operating points in the scheduled range and then the least square method was applied to the interpolation between these sampling points, where each element of matrices was a function of the rotor speed. The control variables were the fuel flow and the low pressure compressor bleed air. The controlled linear model eliminated the inlet temperature overshoot of the high pressure turbine and obtained maximum surge margins within 0.55. The SFC was stabilized in the range of 0.355 to 0.43.

  • PDF

Precise Temperature Control of Oil Coolers with Hot-gas Bypass Manner for Machine Tools Based on PI and Feedforward Control (PI와 피드포워드 제어를 이용한 공작기계용 오일쿨러의 핫가스 바이패스 방식 정밀 온도 제어)

  • Jeong, Seok-Kwon;Byun, Jong-Yeong;Kim, Sang-Ho;Yoon, Jung-In
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.2
    • /
    • pp.111-119
    • /
    • 2011
  • Recently, the performances of speed and accuracy are enhanced in machine tools. The high speed of the machine tools usually causes harmful thermal displacements on the objects. To reduce the thermal displacements, machine tools generally adopt oil coolers with precise temperature control function. This study aims at precise control of oil outlet temperature in the oil coolers with hot-gas bypass manner based on PI control logic. The control system was designed for obtaining steady state error within ${\pm}0.1^{\circ}C$ and maximum overshoot with 0.8% even though abrupt disturbances are added to the system. We showed that the PI gains could be easily decided by numerical simulations using practical transfer function which got experiments. Also, transient characteristics could be improved significantly by reflecting the inlet temperature of an evaporator to the output of a controller feedforwardly considering periodic abrupt disturbances. Through some experiments, excellent control performances were established by the suggested control.

Automatic tune parameter for digital PID controller based on FPGA

  • Tipsuwanporn, V.;Jitnaknan, P.;Gulpanich, S.;Numsomran, A.;Runghimmawan, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1012-1015
    • /
    • 2003
  • Recently technologies have created new principle and theory but the PID control system remains its popularity as the PID controller contains simple structure, including maintenance and parameter adjustment being so simple. The adjust parameter of PID to achieve best response of process which be using time and may be error if user are not expert. Nowadays this problem was solved by develop PID controller which can analysis and auto tune parameter are appropriate with process which used principle of Ziegler ? Nichols but it are expensive and designed for each task. Thus, this paper proposes auto tune PID based on FPGA by use principle of Dahlin which maximum overshoot not over 5 percentages and do not fine tuning again. It have performance in control process are neighboring controller in industrial and simple to use. Especially, It can use various process and low price. The auto tune digital PID processor embedded on chip FPGA XC2S50-5tq-144. The digital PID processor was designed by fundamental PID equation which architectures including multiplier, adder, subtracter and some other logic gate. It was verified by control model of temperature control system.

  • PDF

High Temperature Plastic Deformation Behaviors of the Bulk Metallic Glass Zr-Ti-Cu-Ni-Be Alloy (벌크 비정질 Zr-Ti-Cu-Ni-Be 합금의 고온 소성 변형 특성)

  • Lee K. S.;Ha T. K.;Ahn S. H.;Chang Y. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.272-276
    • /
    • 2001
  • Multicomponent $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ bulk matallic glass alloy shows good bulk glass forming ability due to its high resistance to crystallization in the undercooled liquid state.1) In this study, DSC and X-ray diffractometry have been performed to confirm the amorphous structure of the master $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ alloy. To investigate the mechanical properties and deformation behaviors of the bulk metallic $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ alloy, a series of compression tests has been carried out at the temperatures ranging from $351^{\circ}C$ to $461^{\circ}C$ and at the various initial strain rates from $2{\times}10^{-4}s^{-1}\;to\;2{\times}10^{-2}s^{-1}$. There are two types of nominal stress-strain curves. The one shows linear stress-strain relationship meaning fracture at maximum stress, the other shows plastic deformation including steady-state flow. Also DSC analysis for the compressed specimens has been performed to investigate the change of thermal stability and crystallization behavior for the various test conditions.

  • PDF

Study on Chip on Chip Technology for Minimizing LED Driver ICs (LED Driver ICs칩의 소형화를 위한 Chip on Chip 기술에 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.131-134
    • /
    • 2016
  • This research was analyzed thermal characteristics that was appointed disadvantage when smart LED driver ICs was packaged and we applied extracted thermal characteristics for optimal layout design. We confirmed reliability of smart LED driver ICs package without additional heat sink. If the package is not heat sink, we are possible to minimize package. For extracting thermal loss due to overshoot current, we increased driver current by two and three times. As a result of experiment, we obtained 22 mW and 49.5 mW thermal loss. And we obtained optimal data of 350 mA driver current. It is important to distance between power MOSFET and driver ICs. If thhe distance was increased, the temperature of package was decreased. And so we obtained optimal data of 3.7 mm distance between power MOSFET and driver ICs. Finally, we fabricated real package and we analyzed the electrical characteristics. We obtained constant 35 V output voltage and 80% efficiency.

Dynamic Performance Simulation of the Propulsion System for the CRW Type UAV Using $SIMULINK^{\circledR}$

  • Changduk Kong;Park, Jongha;Jayoung Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.499-505
    • /
    • 2004
  • A Propulsion System of the CRW(Canard Rotor Wing) type UAV(Unmanned Aerial Vehicle) was composed of the turbojet engine to generate the propulsive exhaust gas, and the duct system including straight bent ducts, tip-jet nozzles, a master valve and a variable main nozzle for three flight modes such as lift/landing mode, low speed transition flight mode and high speed forward flight mode. In this study, in order to operate safely the propulsion system, the dynamic Performance behavior of the system was modeled and simulated using the SIMULIN $K^{ }$, which is the user-friendly GUI type dynamic analysis tool provided by MATLA $B^{ }$. In the transient performance model, the inter-component volume model was used. The performance analysis using the developed models was performed at various flight condition, valve angle positions and fuel flow schedules, and these results could set the safe flight mode transition region to satisfy the inlet temperature overshoot limitation as well as the compressor surge margin. Performance analysis results using the SIMULIN $K^{ }$ performance program were compared with them using the commercial program GSP.m GSP.

  • PDF

A Numerical Study on Mixed Convection in Boundary Layer Flows over Inclined Surfaces (경사진 평판 주위에서 경계층유동의 혼합대류에 관한 연구)

  • 김동현;최영기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.725-733
    • /
    • 1990
  • An analysis of laminar mixed convection flow adjacent to the inclined flat surface which is subjected to a uniform temperature in a uniform free stream is performed. Nonsimilar boundary layed equation are derived by using the mixed convection parameters such that smooth transition from the purely forced convection limit to the purely free convection limit is possible. The governing equations are solved by a finite difference method using the coupled box scheme of sixth order. Numerical results are presented for prandtl numbers of 0.7 and 7 with the angle of inclination ranging from 0 to 90 degree from the vertical. The velocity distributions for the buoyancy assisting flow exhibit a significant overshoot above the free stream value in the region of intense mixed convection and the velocity field is found to be more sensitive to the buoyancy effect than the temperature field. The separation point near the wall was obtained for the buoyancy opposing flow. The local Nusselt number increases for buoyancy assisting flow and decreases for opposing flow with increasing value of the local Grashoff number in the mixed convection parameter. For large Prandtl number, the Nusselt number and the friction factor decrease significantly near the separation point. Present numerical predictions are in good agreement with recent experimental results by Ramachandran.

Steady-State/Transient Performance Simulation of the Propulsion System for the Canard Rotor Wing UAV during Flight Mode Transition

  • Kong, Changduk;Kang, Myoungcheol;Ki, Jayoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.513-520
    • /
    • 2004
  • A steady-state/transient performance simulation model was newly developed for the propulsion system of the CRW (Canard Rotor Wing) type UAV (Unmanned Aerial Vehicle) during flight mode transition. The CRW type UAV has a new concept RPV (Remotely Piloted Vehicle) which can fly at two flight modes such as the take-off/landing and low speed forward flight mode using the rotary wing driven by engine bypass exhaust gas and the high speed forward flight mode using the stopped wing and main engine thrust. The propulsion system of the CRW type UAV consists of the main engine system and the duct system. The flight vehicle may generally select a proper type and specific engine with acceptable thrust level to meet the flight mission in the propulsion system design phase. In this study, a turbojet engine with one spool was selected by decision of the vehicle system designer, and the duct system is composed of main duct, rotor duct, master valve, rotor tip-jet nozzles, and variable area main nozzle. In order to establish the safe flight mode transition region of the propulsion system, steady-state and transient performance simulation should be needed. Using this simulation model, the optimal fuel flow schedules were obtained to keep the proper surge margin and the turbine inlet temperature limitation through steady-state and transient performance estimation. Furthermore, these analysis results will be used to the control optimization of the propulsion system, later. In the transient performance model, ICV (Inter-Component Volume) model was used. The performance analysis using the developed models was performed at various flight conditions and fuel flow schedules, and these results could set the safe flight mode transition region to satisfy the turbine inlet temperature overshoot limitation as well as the compressor surge margin. Because the engine performance simulation results without the duct system were well agreed with the engine manufacturer's data and the analysis results using a commercial program, it was confirmed that the validity of the proposed performance model was verified. However, the propulsion system performance model including the duct system will be compared with experimental measuring data, later.

  • PDF

A Dynamic Simulation for Small Turboshaft Engine with Free Power Turbine Using The CMF Method (CMF 기법을 이용한 소형 분리축 방식 터보축 엔진의 동적모사)

  • 공창덕;기자영
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.1
    • /
    • pp.13-20
    • /
    • 1998
  • A steady-state and dynamic simulation program for a small multi-purpose turboshaft engine with the free power turbine was developed. In order to reduce developing cost, time and risk, a turbojet engine whose performance was well-known was used for the gas generator, and life time was improved by replacing turbine material and by using Larson-Miller curves. The component characteristic of the power turbine was derived from scaling the gas generator turbine. Equilibrium equations of mass flow rate and work were used for the steady-state performance analysis, and the Constant Flow Method(CMF) was used for the dynamic performance simulation. The step fuel scheduling was carried out for acceleration in the dynamic simulation. Through this simulation, it was found that the overshoot of the turbine inlet temperature exceeded over the compressor turbine limit temperature.

  • PDF