• 제목/요약/키워드: Temperature Increase

검색결과 11,457건 처리시간 0.041초

EM시험에서의 Joule Heating 영향 및 초기저항값 (Joule Heating Effects and Initial Resistance in Electromigration Test)

  • 주철원;강형곤;한병성
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권6호
    • /
    • pp.436-441
    • /
    • 1999
  • Joule heating effect in EM(Electromigration) test were performed on a bend test structure. EM test is done under high current densities(1.0-2.5MA/cm2), which leads to joule heating. Since joule heating is added to the controlled oven(stress) temperature, themetal line temperature is higher than the stress temperature. The increase in the stress temperature due to joule heating is important because EM phenomena and metal line failure are related to the stress temperature. In this paper, metal line was stressed with a current density of 1.0 MA/$cm^2$, 1.5MA/$cm^2$, 2.0MA/$cm^2$, 2.5MA/$cm^2$, for 1200 sec and temperature increase due to joule heating was less than $10^{\circ}C$. Also it took 30 minutes for the metal line to equalized with oven temperature. Recommendations are given for the EM test to determine the initial resistance of EM test structure under stress temperature and current density.

  • PDF

재생 면적비가 가정용 소형 제습로터의 성능에 미치는 영향에 관한 실험적 연구 (An Experimental Study of the Effect of Regeneration Area Ratio on the Performance of Small-Sized Dehumidification Rotor for Residential Usage)

  • 김내현
    • 설비공학논문집
    • /
    • 제27권5호
    • /
    • pp.277-282
    • /
    • 2015
  • During hot and humid weather, air-conditioners consume a large amount of electricity due to the large amount of latent heat. Simultaneous usage of a dehumidifier may reduce latent heat and reduce electricity consumption. In this study, dehumidification performance was measured for a small-sized dehumidification rotor made of inorganic fiber impregnated with metallic silicate within a constant temperature and humidity chamber. Regeneration to dehumidification depends on ratio, rotor speed, room temperature, regeneration temperature, room relative humidity and frontal velocity to the rotor. Results demonstrate an optimum area ratio (1/2), rotor speed (1.0 rpm), and regeneration temperature ($100^{\circ}C$) to achieve a dehumidification rate of 0.0581 kg/s. As the area ratio increases, the optimum rotation speed and the optimum regeneration temperature also increase. Above the optimum rotor speed, incomplete regeneration reduces dehumidification. Above the optimum regeneration temperature, increased temperature variation between regeneration and dehumidification reduces dehumidification. Dehumidification rate also increases with an increase of relative humidity, dehumidification temperature and flow velocity into the rotor.

High Temperature Electrical Behavior of 2D Multilayered MoS2

  • 이연성;정철승;백종열;김선국
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.377-377
    • /
    • 2014
  • We demonstrate the high temperature-dependent electrical behavior at 2D multilayer MoS2 transistor. Our previous reports explain that the extracted field-effect mobility of good device was inversely proportional to the increase of temperature. Because scattering mechanism is dominated by phonon scattering at a well-designed MoS2 transistor, having, low Schottky barrier. However, mobility at an immature our $MoS_2$ transistor (${\mu}m$ < $10cm^2V^{-1}s^{-1}$) is proportional to the increase temperature. The existence of a big Schottky barrier at $MoS_2-Ti$ junction can reduce carrier transport and lead to lower transistor conductance. At high temperature (380K), the field-effect mobility of multilayer $MoS_2$ transistor increases from 8.93 to $16.9cm^2V^{-1}sec^{-1}$, which is 2 times higher than the value at room temperature. These results demonstrate that carrier transport at an immature $MoS_2$ with a high Schottky barrier is mainly affected by thermionic emission over the energy barrier at high temperature.

  • PDF

Estimation of the optimal heated inlet air temperature for the beta-ray absorption method: analysis of the PM10 concentration difference by different methods in coastal areas

  • Shin, So Eun;Jung, Chang Hoon;Kim, Yong Pyo
    • Advances in environmental research
    • /
    • 제1권1호
    • /
    • pp.69-82
    • /
    • 2012
  • Based on the measurement data of the particulate matter with an aerodynamic diameter of less than or equal to a nominal 10 ${\mu}m$ (PM10) by the ${\beta}$-ray absorption method (BAM) equipped with an inlet heater and the gravimetric method (GMM) at two coastal sites in Korea, the optimal inlet heater temperature was estimated. By using a gas/particle equilibrium model, Simulating Composition of Atmospheric Particles at Equilibrium 2 (SCAPE2), water content in aerosols was estimated with varying temperature to find the optimal temperature increase to make the PM10 concentration by BAM comparable to that by GMM. It was estimated that the heated air temperature inside the BAM should be increased up to $35{\sim}45^{\circ}C$ at both sites. At this temperature range, evaporation of volatile aerosol components was minor. Similar ($30{\sim}50^{\circ}C$) temperature range was also obtained from the calculation based on the absolute humidity which changed with ambient absolute humidity and chemical composition of hygroscopic species.

고출력 슁글드 태양광 모듈의 온도 저감에 따른 출력 특성 분석 (Analysis of Output Characteristics of High-Power Shingled Photovoltaic Module due to Temperature Reduction)

  • 배재성;유장원;지홍섭;이재형
    • 한국전기전자재료학회논문지
    • /
    • 제33권6호
    • /
    • pp.439-444
    • /
    • 2020
  • An increase in the temperature of photovoltaic (PV) modules causes reduced power output and shorter lifetime. Because of these characteristics, demands for the heat dissipation of PV modules are increasing. In this study, we attached a heat dissipation sheet to the back sheet of a shingled PV module and observed the temperature changes. The PV shingled module was tested under Standard Test Conditions (STCs; irradiance: 1,000 W/㎡, temperature: 25℃, air mass: 1.5) using a solar radiation tester, wherein the temperature of the PV module was measured by irradiating light for a certain duration. As a result, the temperature of the PV module with the heat dissipation sheet decreased by 3℃ compared to that without a heat dissipation sheet. This indicated that the power loss was caused by a temperature increase of the PV module. In addition, it was confirmed that the primary parameter contributing to the reduced PV module output power was the open circuit voltage (Voc).

전자파(電磁波)에 노출(露出)된 생체(生體)의 국소부위(局所部位)의 온도(溫度) 특성(特性) (A Characteristics of Temperature of the Local Tissue in the Human Body under Local Exposure of Electromagnetic Wave)

  • 박주태
    • 한국산업융합학회 논문집
    • /
    • 제5권4호
    • /
    • pp.321-327
    • /
    • 2002
  • There has been an increase in the public concern about possible health risks by electromagnetic exposure from mobile phones. Recently, increase in the use among young children of portable telephones public concern regarding potential health hazards due to a hot spot appearing inside the infant head, has been growing. Since the biological hazards due to RF exposure are caused mainly by a temperature-rise in tissue, the effect of localized SAR for portable telephones should also be related to the temperature-rise in the human head. In this paper, it was measured that in the actual use of portable telephone the temperature of the local tissue in the human-head change. As a result, it should be noted that the mean temperature of human-body and localized tissue is rising from beginning call. However the temperature variation of localized tissue is recovered rapidly as normal temperature, although the mean temperature of human-body rising continuously at ending call of portable telephone.

  • PDF

스테인리스강과 양극산화된 알루미늄 합금의 전기화학적 부식특성에 미치는 해수온도의 영향 (The Effect of Seawater Temperature on the Electrochemical Corrosion Behaviour of Stainless Steels and Anodized Aluminum Alloys)

  • 정상옥;김성종
    • Corrosion Science and Technology
    • /
    • 제20권2호
    • /
    • pp.85-93
    • /
    • 2021
  • The corrosion damage of materials in marine environment mainly occurs by Cl- ions due to the breakdown of passive films. Additionally, various characteristics in seawater such as salinity, temperature, immersion time, flow rate, and biological activity also affect corrosion characteristics. In this study, the corrosion characteristics of stainless steels (STS 304 and STS 316L) and anodized aluminum alloys (AA 3003 and AA 6063) were evaluated with seawater temperature parameters. A potentiodynamic polarization experiment was conducted in a potential range of -0.25 V to 2.0 V at open circuit potential (OCP). Corrosion current density and corrosion potential were obtained through the Tafel extrapolation method to analyze changes in corrosion rate due to temperature. Corrosion behavior was evaluated by measuring weight loss before/after the experiment and also observing surface morphology through a scanning electronic microscope (SEM) and 3D microscopy. Weight loss, maximum damage depth and pitting damage increased as seawater temperature increased, and furthermore, the tendency of higher corrosion current density with an increase of temperature attributed to an increase in corrosion rate. There was lower pitting damage and lower corrosion current density for anodized aluminum alloys than for stainless steels as the temperature increased.

온도 및 염화나트륨이 측백나무 종자 발아에 미치는 영향 (Effect of Temperature and Sodium Chloride on Seed Germination of Thuja orientalis)

  • 탁우식;김태수;최충호
    • 한국자원식물학회지
    • /
    • 제19권1호
    • /
    • pp.97-104
    • /
    • 2006
  • 온도 및 NaCl 등의 외부 환경인자에 노출되었을 때 나타나는 측백나무 종자의 발아특성을 조사하고 불량환경에 대한 내성 및 적정 환경조건을 알아보고자 본 연구를 실시하였다. 15, 20, 25, $30^{\circ}C$의 온도조건에서 NaCl 용액을 0, 500, 1,000, 2,000, 4,000ppm의 5수준으로 분주하여 종자발아특성 및 상대수분흡수율을 조사하였다. 발아율의 경우 $15^{\circ}C$ 온도에서 가장 높게 나타났으며 NaCl에 의한 감소의 폭도 가장 작았다. 반면, $30^{\circ}C$에서는 모두 현저히 낮게 나타났다. 휴면율과 고사율은 대부분 고온으로 갈수록 높게 나타났다. 특히, 휴면율은 $30^{\circ}C$에서 그 차이가 현저하였으며, 고사율에 비해서도 높은 수치를 보였다. 온도 및 NaCl의 농도에 대한 상호연관성을 알아보고자 two-way ANOVA 분석을 실시한 결과 두 요인 및 요인간 상호작용에서 유의성이 인정되었다(p<0.001). 평균발아일수는 온도 및 NaCl 농도가 증가함에 따라 대체적으로 증가하는 경향을 보여 발아가 지연되었음을 나타냈다. 그러나 $30^{\circ}C$에서는 NaCl의 독성에 의해 고사종자가 발생하여 증가 후 감소하는 경향을 나타냈다. 발아속도와 발아균일지수는 온도 및 NaCl 농도가 증가함에 따라 감소하였다. 상대수분흡수율은 $15^{\circ}C$에서 가장 높게 나타났으며, NaCl 농도가 증가함에 따라 감소하는 경향을 보였다. 또한 발아율, 발아속도 및 발아 균일지수와 높은 정(+)의 상관을 나타내었다. 결과적으로, 고온과 염류는 측백나무 종자의 발아를 저해하는 요인으로 작용하므로 발아율, 발아속도 및 발아균일지수의 감소를 줄이기 위해 노지 파종시 이들 요인에 대한 고려가 필요할 것으로 사료된다.

온도가 막분리 투과성능에 미치는 영향 (The Effect of Feed Temperature On Permeate Flux During Membrane Separation)

  • 김광수;문덕수;김현주;이승원;지호;정현지;원혜정
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제17권1호
    • /
    • pp.13-19
    • /
    • 2014
  • 막분리법에 의한 해수 담수화시 공급 원수 온도는 막성능에 영향을 미친다. 특히 폐열원을 이용하여 분리막 투과량을 증대시키고자 하는 경우에는 고온의 공급 원수가 분리막 성능에 미치는 영향을 정확히 분석하여 적용하는 것이 필요하다. 온도에 의한 막투과 성능 분석을 위해 $10^{\circ}C$에서 $60^{\circ}C$까지 공급 해수 온도를 변화시키면서 실험을 실시하였다. 온도가 상승하면서 투과량이 증가하는 경향을 물의 점성 변화와 막의 변화로 나누어서 분석하였다. NF 막에서는 온도에 따른 물의 점성 변화로 투과량 변화를 예측할 수 있었으나 RO막의 경우는 물의 점성변화로 예측한 투과량과 실험에 의한 투과량은 $60^{\circ}C$에서 30%정도 차이가 나타났다. 이는 RO막이 원수 온도가 상승함에 따라 막의 수축이 일어나 공극의 크기가 8%정도 감소함에 기인하는 것으로 추정된다. 따라서 막분리식 해수 담수화에서 투과량을 증대시키기 위한 온도 상승은 막변형이 일어나지 않는 범위 내에서 효과적으로 수행하여야 할 것이다.

인삼의 온도에 대한 생리반응 II. 엽의 생리, 지온, 기온, 병환의 생육 (Physiological Response of Panax Ginseng to Tcmpcrature II. Leaf physiology, soil temperature, air temperature, growth of pathogene)

  • 박훈
    • Journal of Ginseng Research
    • /
    • 제4권1호
    • /
    • pp.104-120
    • /
    • 1980
  • The effects of temperature on transpiration, chlorophyll content, frequency and aperture of stomata, and leaf temperature of Panax ginseng were reviewed. Temperature changes of soil and air under spade roof were also reviewed. Growth responses of responses of ginseng plant at various temperature were assessed in relation to suseptibillity of ginseng plants. Reasonable management of ginseng fields was suggested based on the response of ginseng to various temperatures. Stomata frequency may be increased under high temperature during leaf$.$growing stage. Stomata aperture increased by high temperature but the increase of both frequency and aperture appears not enough for transpiration to overcome high temperature encountered during summer in most fields. Serial high temperature disorder, i.e high leaf temperature, chlorophyll loss, inhibition of photosynthesis, increased respiration and wilting might be alleviated by high humidity and abundant water supply to leaf. High air temperature which limits light transmission rate inside the shade roof, induces high soil temperature(optimum soil temperature 16∼18$^{\circ}C$) and both(especially the latter) are the principal factors to increase alternaria blight, anthracnose, early leaf fall, root rot and high missing rate of plant resulting in poor yield. High temperature disorder was lessen by abundant soil water(optimum 17∼21%) and could be decreased by lowering the content of availability of phosphorus and nitrogen in soil consequently resulting in less activity of microorganisms. Repeated plowing of fields during preparation seems to be effective for sterilization of pathogenic microoganisms by high soil temperature only on surface of soils. Low temperature damage appeared at thowing of soils and emergence stage of ginseng but reports were limited. Most limiting factor of yield appeared as physiological disorder and high pathogen activity due to high temperature during summer(about three months).

  • PDF