• 제목/요약/키워드: Temperature Increase

검색결과 11,414건 처리시간 0.039초

크롬주철의 기계적 성질에 미치는 합금원소(V,Ti)와 열처리의 영향에 관한 연구 (The Study on the Effect of Alloying Elements(V,Ti) and Heat Treatment on the Mechanical Properties in Chromium Cast Iron)

  • 김석원;김동건;이의권;장호열
    • 한국주조공학회지
    • /
    • 제12권6호
    • /
    • pp.450-457
    • /
    • 1992
  • The study aims to investigate the influence of alloying elements(V,Ti) and heat treatment on the mechanical properties in hypo-eutectic chromium cast iron. Before heat treatment, all of the specimen were fully annealed(950$^{\circ}C{\times}5Hr$) to homogenize their structures. The influence of heat treatment and alloying elements(V,Ti) on hardness, retained austenite volume, and charpy impact energy as well as tensile strength of the specimen was tested systematically. Retained austenite decreased with the increase of V and Ti, but incresed with the increase of number of cycles. The impact energy decreased, and hardness and tensile strength increased with the increase of alloying elements (V,Ti) and the decrease of the number of cycles. The hardness and tensile strength increased, but impact energy decreased with the increase of V and Ti elements and the temperature of destabillization heat treatment. After the destabillization heat treatment at the same temperature, the impact energy is increased, while hardness and tensile strength decreased as the increase of tempering temperature. Retained austenite increased with increase of destabilizatoin heat treatment temperature, while decrease with the increase of tempering temperature.

  • PDF

전착과산화납양극에 의한 황산염. 전해산화시의 전해온도의 영향 (Influence of Temperature on the Electrolytic Oxidation of Sulphate Solutions by Electro-deposited Lead Peroxide Anode)

  • 남종우;김학준
    • 대한화학회지
    • /
    • 제15권5호
    • /
    • pp.223-228
    • /
    • 1971
  • In the electrolytic preparation of persulphate from sulphate solution, the current efficiency decrease with temperature increase at the platinum anode. But in case of electrodeposited lead peroxide anode, the current efficiency increase with temperature of the solution. The reason seems to be that the ozone formation is faster in platinum anode than in lead peroxide as temperature increase.

  • PDF

MDF로 제조된 우드세라믹의 표면온도변화(I) -밀도 및 소성온도의 영향- (Change of Surface Temperature in Woodceramics Made from MDF(I) -Effect of Density and Burning Temperature-)

  • 오승원
    • 임산에너지
    • /
    • 제21권1호
    • /
    • pp.1-6
    • /
    • 2002
  • 본 연구는 MDF로 제조된 우드세라믹을 이용하여 온돌마루판 시공 시 하부소재로서의 사용가능성을 검토하고자 실시하였다. 650℃와 800℃로 소성하여 제조된 우드세라믹을 발열판 위에 올려놓고 발열판의 온도 및 시간의 경과에 따른 우드세라믹의 표면온도의 변화를 측정하였다. 우드세라믹의 표면온도는 밀도가 증가함에 따라 표면온도가 증가하였으며, 바닥온도의 변화에 따른 표면온도는 바닥온도가 증가함에 따라 표면온도가 증가하여, 측정온도가 높을수록 열전도가 빠름을 알 수 있었다. 그러나 우드세라믹 제조 시 소성온도에 따른 표면온도의 변화는 뚜렷한 차이를 발견할 수 없었다.

  • PDF

연속 스탬핑 작업시 리어 플로어 성형성 향상기술 개발 (Development of Technique to Improve the Formability of the Rear Floor in Series Stamping Process)

  • 김동환;이정민;고영호;차해규;김병민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.25-28
    • /
    • 2004
  • A fracture was generated by change of clearance and deterioration of material properties on the sheet metal through temperature. This paper describes the results of a prediction about the temperature of the sheet metal during continuous stamping process, because the temperature increase of the sheet metal has a detrimental effect on formability. To analyze the temperature increase of the sheet metal during continuous stamping process, tensile and friction tests were performed from room temperature to 300$^{\circ}C$ at warm condition in this study. As temperature increase, tensile strength, elongation, strain hardening exponent and anisotropy coefficient for each specimens were decreased. On the other hand, friction coefficients were increased. From the FE-simulation results, temperature upward tendency was identified on dies and sheet metal. These observations are rationalized on the basis of the material properties, friction coefficient vs. temperature relationship for the sheet.

  • PDF

Effect of temperature on service life of flexible pavement using finite element analysis

  • Amin Hamdi
    • Geomechanics and Engineering
    • /
    • 제32권5호
    • /
    • pp.513-521
    • /
    • 2023
  • Temperature is one of the most critical elements that influence the rutting and fatigue resistance of flexible pavements. Particularly in extreme hot regions in Saudi Arabia, high temperature would significantly reduce the rutting resistance of flexible pavements leading to reduction of pavement service life. Due to the impacts of global warming, average temperature in Saudi Arabia is expected to further increase by about 4℃ by the end of the 21st century. The substantial increase in average temperature will elevate the expected pavement maintenance and rehabilitation cost. This paper analyzes the structural effects of temperature on pavement using layered elastic analysis based on finite element techniques. The research team calculated the potential loss of pavement service life due to the projected temperature increase and climate change. The paper also analyzed potential impact of using carbon waste in asphalt concrete to tackle the derogatory impacts of temperature rise.

Temperature Dependence of Magnetic State of Fe/Al Multilayered Films

  • Lee, S. J.;J. S. Baek;Kim, Y. Y.;W. Y. Lim;W. Abdul-Razzaq
    • Journal of Magnetics
    • /
    • 제2권3호
    • /
    • pp.93-95
    • /
    • 1997
  • We investigated the temperature dependence of magnetization of Fe/Al multilayers fabricated by dc magnetron sputtering system. As the temperature increased from 5 K in a low magnetic field (100G) the magnetization of the samples increased and made a broad peak at some critical temperature. Further increase of temperature decresed the magnetization as an ardinary ferromagnetic curve. Part of samples show rapid increase of magnetization at low temperature. A model developed in this study suggests that the biquadratic coupling yields such a rapidly increasing behavior of magnetization at low temperature.

  • PDF

Al-SiCp복합재료에서 SiCp의 용해거동에 관한 연구 (A Study on Dissolution Behaviors of SiCp in Al-SiCp Composite)

  • 김석원;이의권;전우용
    • 한국주조공학회지
    • /
    • 제13권4호
    • /
    • pp.350-358
    • /
    • 1993
  • Aluminum base composites reinforced with various amount of SiC particles and Mg contents have been investigated by different fabrication method for twenty-years. In this paper, how the decomposition and dissolution behaviors of $SiCp(20{\mu}m)$ in the melt of Al composites arised was studied. As the results, the decomposition and dissolution of SiCp into the melt of Al composites increased with increase of the temperature above $720^{\circ}C$, and holding time at a given melting temperature. Because SiC is thermodynamically unstable in this Al-SiCp composite at temperature above the liquidus, SiCp dissolves and reacts with Al in matrix to form $Al_4C_3$ according to following chemical equation $4Al+3SiC{\rightarrow}Al_4C_3+3Si$, Si decomposed and dissolved from SiCp increases Si content of matrix, while liquidus temperature of matrix decrease with increase of SiC content in matrix. The hardness of SiCp decreased with increase of the melting temperature, the hardness of the matrix /particle interface increased with increase of the melting temperature due to increase of the $Mg_2Si$ and $Al_4C_3$ intermetallic compounds, etc.

  • PDF

0.5C-17Cr-0.5Ni 마르텐사이트계 스텐인리스강의 인장성질에 미치는 탄화물의 영향 (Effect of Carbides on the Tensile Properties of 0.5C-17Cr-0.5Ni Martensitic Stainless Steel)

  • 권순두;손동욱;강창룡
    • 동력기계공학회지
    • /
    • 제20권3호
    • /
    • pp.11-16
    • /
    • 2016
  • The effect of carbides on the tensile properties in 0.5C-17Cr-0.5Ni martensitic stainless steel was studied. With the increase of austenitizing temperature, the volume fraction of residual carbide was decreased rapidly. In tempered specimens after quenching, the volume fraction of total carbide was decreased with the increase of austenitizing temperature. In tempered specimens after quenching, strength was decrease and elongation was increased with the increase of austenitizing temperature. Tensile strength was increase and elongation was decreased with the increase of volume fraction of residual and total carbides. With the increase of austenitizing temperature, the tensile properties of mod. 0.5C-17Cr-0.5Ni martensitic stainless was affected greatly by residual carbide than tempered carbide.

병렬로 접속된 저항체에서 저항온도계수의 거동 (Behavior of the Temperature Coefficient of Resistance at Parallelly Connected Resistors)

  • 이선우
    • 한국전기전자재료학회논문지
    • /
    • 제31권2호
    • /
    • pp.98-101
    • /
    • 2018
  • In this paper, we discuss the fabrication of metal alloy resistors. We connected them in parallel to estimate their resistance and temperature coefficient of resistance (TCR). The fabricated resistors have different resistances, 5 and $10{\Omega}$ and different TCRs, 50 and $200ppm/^{\circ}C$. Each resistor was confirmed to have the correct atomic composition through the use of energy dispersive X-ray (EDX). The resistors' electrical properties were confirmed by measuring resistance and TCR. The resistance and TCR of the resistors connected in parallel were estimated through the increase in resistance due to the increase in temperature, and were compared with the measured values. We are confident that this TCR estimation technique, which uses the increase in resistance due to temperature, will be very useful in designing and fabricating resistors with low and stable TCR.

원심주조된 내열강의 미세조직 및 기계적성질에 미치는 단조 조건의 영향 (Effect of Forging Condition on the Microstructure and Mechanical Properties in Centrifugal Casted Heat Resistant Steel)

  • 강창룡;이상명;조덕호;박영태;이도훈;김영철
    • 동력기계공학회지
    • /
    • 제13권3호
    • /
    • pp.47-52
    • /
    • 2009
  • The effect of forging start temperature, forging ratio on the microstructure and mechanical properties of B7B4 steel ware investigated. Microstructure of centrifugal casted B7B4 steel consisted of martensite and ferrite phase. The volume fraction of ferrite increased with increase of forging start temperature and decreased with increase of forging ratio. Tensile strength and hardness decreased with higher of forging start temperature, while impact value and elongation increased with higher of forging start temperature. With increase of forging ratio, tensile strength rapidly increased up to the forging ratio of 30%, and then slowly increased, but elongation was decreased. Hardness and impact value rapidly increased with increase of forging ratio.

  • PDF