• Title/Summary/Keyword: Temperature Humidity Index

Search Result 297, Processing Time 0.026 seconds

Estimation of Water Temperature by Heat Balance Method in Paddy Field. (열수지법(熱收支法)에 의한 벼논의 수온추정(水溫推定))

  • Lee, Jeong-Taek;Yun, Seong-Ho;Im, Jung-Nam;Takami, Shinich
    • Korean Journal of Environmental Agriculture
    • /
    • v.8 no.1
    • /
    • pp.30-36
    • /
    • 1989
  • To determine irrigated water temperature under the rice plant canopy, micrometeorological elements air temperature, relative humidity, water temperature, solar radiation, and the rice leaf area index the rice plant canopywere measured. Water temperature under the canopy was also estimated from these data. The results are as follows ; 1. Maximum and minimum temperatures of water in the paddy field were higher about $1-2^{\circ}C$ than those of air temperature. 2. Mean water temperature under the canopy became lower than mean air temperature when the leaf area indices were greater than 4, because of decreased light penetration rates 3. Penetration amounts of net radiation under the canopy can be estimated by an exponential equation 4. Estimated water temperatures under the canopy by a combination method model was adaptable in Suweon, a plain area, but its accuracy was lower in Jinbu, an alpine area.

  • PDF

A Study on Ecological Niche of Pinus densiflora Forests according to the Environmental Factors (환경인자에 따른 소나무림의 생태적 지위에 관한 연구)

  • Seo, Dong-Jin;Oh, Chang-Young;Woo, Kwan-Soo;Lee, Jae-Cheon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.3
    • /
    • pp.153-160
    • /
    • 2013
  • This study was conducted to investigate the effect of ecological factors affecting Pinus densiflora forest distribution associated with climate change in the future. Ecological niche is used as a method to quantify the position occupied in biological communities, space, influence and all ecological factors. Ecological niche breadth was analyzed on meteorological and growth factors of P. densiflora. Nine sites (i.e., Gangneung, Jeongseon, Pyeongchang, Hamyang, Bonghwa, Yeongyang, Uljin, Uiseong and Boseong) were selected to set $20m{\times}20m$ quadrat from September to October 2010. The height, DBH, clearlength, crown width and basal area were measured at each quadrat and used as growth factors. In addition, the measured values from the closest weather stations of each survey area of the maximum, mean and minimum temperature, humidity and precipitation were used as meteorological factors. The ecological niche breadth of the five meteorological factors except humidity was low. It is considered that precipitation could effect on the distribution of P. densiflora forest. In particular, maximum temperature showed low ecological niche breadth less than 0.4 in most of the survey areas. However, the ecological niche breadth of the five growth factors was high in all survey areas.

Proposal of Prediction Technique for Future Vegetation Information by Climate Change using Satellite Image (위성영상을 이용한 기후변화에 따른 미래 식생정보 예측 기법 제안)

  • Ha, Rim;Shin, Hyung-Jin;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.3
    • /
    • pp.58-69
    • /
    • 2007
  • The vegetation area that occupies 76% in land surface of the earth can give a considerable impact on water resources, environment and ecological system by future climate change. The purpose of this study is to predict future vegetation cover information from NDVI (Normalized Difference Vegetation Index) extracted from satellite images. Current vegetation information was prepared from monthly NDVI (March to November) extracted from NOAA AVHRR (1994 - 2004) and Terra MODIS (2000 - 2004) satellite images. The NDVI values of MODIS for 5 years were 20% higher than those of NOAA. The interrelation between NDVIs and monthly averaged climate factors (daily mean, maximum and minimum temperature, rainfall, sunshine hour, wind velocity, and relative humidity) for 5 river basins of South Korea showed that the monthly NDVIs had high relationship with monthly averaged temperature. By linear regression, the future NDVIs were estimated using the future mean temperature of CCCma CGCM2 A2 and B2 climate change scenario. The future vegetation information by NOAA NDVI showed little difference in peak value of NDVI, but the peak time was shifted from July to August and maintained high NDVIs to October while the present NDVI decrease from September. The future MODIS NDVIs showed about 5% increase comparing with the present NDVIs from July to August.

  • PDF

Estimation of Areal Evapotranspiration Using NDVI and Temperature Data (NDVI와 기온자료를 이용한 광역증발산량의 추정)

  • Shin, Sha-Chul;An, Tae-Young
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.3
    • /
    • pp.79-89
    • /
    • 2004
  • Remote sensing technique is a probable means to estimate distribution of actual evapotranspiration in connection with regional characteristics of vegetation and landuse. The factors controlling evapotranspiration from ground surface are air temperature, humidity, wind, radiation, soil moisture and so on. Not only the vegetation influences directly the evapotranspiration, but also these factors strongly influences the vegetation growth at the area. Therefore, it can be expected that evapotranspiration is highly correlated to vegetation condition. The normalized difference vegetation index (NDVI) showed excellent ability to get the vegetation information. The NDVI is obtained using NOAA/AVHRR have been studied as a tool for vegetation monitoring. In this paper, a simple method to estimate actual avapotranspiration is proposed based on vegetation and meteorological data.

  • PDF

Diversity of Culturable Soil Micro-fungi along Altitudinal Gradients of Eastern Himalayas

  • Devi, Lamabam Sophiya;Khaund, Polashree;Nongkhlaw, Fenella M.W.;Joshi, S.R.
    • Mycobiology
    • /
    • v.40 no.3
    • /
    • pp.151-158
    • /
    • 2012
  • Very few studies have addressed the phylogenetic diversity of fungi from Northeast India under the Eastern Himalayan range. In the present study, an attempt has been made to study the phylogenetic diversity of culturable soil fungi along the altitudinal gradients of eastern Himalayas. Soil samples from 24 m above sea level to 2,000 m above sea level altitudes of North-East India were collected to investigate soil micro-fungal community structure and diversity. Molecular characterization of the isolates was done by PCR amplification of 18S rDNA using universal primers. Phylogenetic analysis using BLAST revealed variation in the distribution and richness of different fungal biodiversity over a wide range of altitudes. A total of 107 isolates were characterized belonging to the phyla Ascomycota and Zygomycota, corresponding to seven orders (Eurotiales, Hypocreales, Calosphaeriales, Capnodiales, Pleosporales, Mucorales, and Mortierellales) and Incertae sedis. The characterized isolates were analysed for richness, evenness and diversity indices. Fungal diversity had significant correlation with soil physico-chemical parameters and the altitude. Eurotiales and Hypocreales were most diverse and abundant group of fungi along the entire altitudinal stretch. Species of Penicillium (D=1.44) and Aspergillus (D=1.288) were found to have highest diversity index followed by Talaromyces (D=1.26) and Fusarium (D=1.26). Fungal distribution showed negative correlation with altitude and soil moisture content. Soil temperature, pH, humidity and ambient temperature showed positive correlation with fungal distribution.

Effect of Hydro-meteorological and Surface Conditions on Variations in the Frequency of Asian Dust Events

  • Ryu, Jae-Hyun;Hong, Sungwook;Lyu, Sang Jin;Chung, Chu-Yong;Shi, Inchul;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.25-43
    • /
    • 2018
  • The effects of hydro-meteorological and surface variables on the frequency of Asian dust events (FAE) were investigated using ground station and satellite-based data. Present weather codes 7, 8, and 9 derived from surface synoptic observations (SYNOP)were used for counting FAE. Surface wind speed (SWS), air temperature (Ta), relative humidity (RH), and precipitation were analyzed as hydro-meteorological variables for FAE. The Normalized Difference Vegetation Index (NDVI), land surface temperature (LST), and snow cover fraction (SCF) were used to consider the effects of surface variables on FAE. The relationships between FAE and hydro-meteorological variables were analyzed using Z-score and empirical orthogonal function (EOF) analysis. Although all variables expressed the change of FAE, the degrees of expression were different. SWS, LST, and Ta (indices applicable when Z-score was < 0) explained about 63.01, 58.00, and 56.17% of the FAE,respectively. For NDVI, precipitation, and RH, Asian dust events occurred with a frequency of about 55.38, 67.37, and 62.87% when the Z-scores were > 0. EOF analysis for the FAE showed the seasonal cycle, change pattern, and surface influences related to dryness condition for the FAE. The intensity of SWS was the main cause for change of FAE, but surface variables such as LST, SCF, and NDVI also were expressed because wet surface conditions suppress FAE. These results demonstrate that not only SWS and precipitation, but also surface variables, are important and useful precursors for monitoring Asian dust events.

Spring Forest-Fire Variability over Korea Associated with Large-Scale Climate Factors (대규모 기후인자와 관련된 우리나라 봄철 산불위험도 변동)

  • Jeong, Ji-Yoon;Woo, Sung-Ho;Son, Rack-Hun;Yoon, Jin-Ho;Jeong, Jee-Hoon;Lee, Suk-Jun;Lee, Byung-Doo
    • Atmosphere
    • /
    • v.28 no.4
    • /
    • pp.457-467
    • /
    • 2018
  • This study investigated the variability of spring (March-May) forest fire risk in Korea for the period 1991~2017 and analyzed its relationship with large-scale climate factors. The Forest Weather Index (FWI) representing the meteorological risk for forest fire occurrences calculated based on observational data and its relationship with large-scale climate factors were analyzed. We performed the empirical orthogonal function (EOF) analysis on the spring FWI. The leading EOF mode of FWI accounting for about 70% of total variability was found to be highly correlated with total number of forest fire occurrences in Korea. The high FWI, forest fire occurrence risk, in Korea, is associated with warmer atmosphere temperature in midwest Eurasia-China-Korea peninsula, cyclonic circulation anomaly in northeastern China-Korea peninsula-northwest pacific, westerly wind anomaly in central China-Korea peninsula, and low humidity in Korea. These are further related with warmer sea surface temperature and enhanced outgoing longwave radiation over Western Pacific, which represents a typical condition for a La $Ni\tilde{n}a$ episode. This suggests that large-scale climate factors over East Asia and ENSO could have a significant influence on the occurrence of spring forest fires in Korea.

Occurrence of Fusarium wilt and Twospotted Spider Mite under Plastic Mulched and Non-Plastic Mulched Bed in Hydroponic Culture of Strawberry (딸기 수경재배에서 베드 피복유무에 따른 시들음병과 점박이응애 발생 양상)

  • Nam, Myeong Hyeon;Kim, Hyun Sok;Kim, Tae Il;Oh, Sang-Keun
    • Research in Plant Disease
    • /
    • v.24 no.4
    • /
    • pp.257-264
    • /
    • 2018
  • Hydroponic strawberry culture system is increasing annually. Most of strawberry farmers use mulched bed in hydroponic culture and strawberry plants were transplanted in early September. After transplanting, Fusarium wilt caused by Fusarium oxysporum f. sp. fragariae and twospotted spider mite (TSSM), Tetranychus urticae, can increase their occurrence under high temperature condition. Therefore, we conducted for comparison occurrence of Fusarium wilt and TSSM on mulched with green polyethylene film and non-mulched bed. Occurrence of Fusarium wilt on mulched bed was started from early October and more increase than non-mulched bed. Damage rate of TSSM on mulched bed was shown higher than non-mulched bed. Temperature of substrate in mulched bed increased than non-mulched bed, but relative humidity near plants was decreased. As a result, use of non-mulched bed should be effective for reducing of Fusarium wilt and TSSM on strawberry plants.

Proposing a strategy based on body-thermal status to improve the welfare of heat-stressed and water-deprived goats (Capra hircus)

  • Emad M. Samara;Mohammed A. Al-Badwi;Khalid A. Abdoun;Ahmed A. Al-Haidary
    • Animal Bioscience
    • /
    • v.37 no.12
    • /
    • pp.2189-2201
    • /
    • 2024
  • Objective: Despite the considerable body of research on the effects of heat stress coupled with water scarcity (either through restriction or deprivation) on goats, aimed at enhancing their welfare, there remains a notable gap in the literature regarding the subsequent period following water restoration, during which the cumulative impact is fully alleviated. In response to this gap, we propose a strategy grounded in the assessment of body-thermal status to improve the welfare of heat-stressed and water-deprived goats. Specifically, our strategy seeks to determine the minimally required recovery interval necessary to completely mitigate the residual effects of water deprivation endured for a duration of 72 hours. Methods: Eight healthy Aardi bucks, aged 10 months and weighing 30 kg, were subjected to three distinct stages: euhydration, dehydration, and rehydration. Each stage spanned for 72 hours except for the rehydration stage, which was left unrestricted. Various meteorological, biophysiological, and thermophysiological measurements were subsequently recorded. Results: Exposure of heat-stressed goats, as indicated by the temperature-humidity index values, to a 72 hours deprivation period resulted in noticeable (p<0.05) alterations in their biophysiological (daily feed intake, body weight, and feces water content) and thermophysiological responses (core, rectal, skin, and surface temperatures, respiratory and heart rates, internal, external, and total body-thermal gradients, heat tolerance and adaptability coefficients, heterothermial total body-heat storage, and total water conservation). Remarkably, our findings demonstrate that all assessed variables, whether measured or estimated, returned to their baseline euhydration levels within 10 days of commencing the rehydration phase. Conclusion: In order to improve the welfare of heat-stressed and 72 hours water-deprived goats, it is imperative to allow a recovery period of no less than 10 days following the restoration of water access prior to initiating any subsequent experiments involving these animals. Such experiments, addressing these critical aspects, serve to advance our understanding of goat welfare and obviously hold promise for contributing to future food security and economic viability.

Effect of Heat Stress of Extreme Heat Lever on Muscle functionand Muscle Injury Markers in Elderly Women (열 스트레스가 여성노인들의 근기능 및 근손상에 미치는 영향)

  • Park, Sok;Lee, Chone Ho;Back, Seung Ok;Shin, Yong Up;Kim, Jung Suk;Cho, Young Wung;Lee, Young Jun
    • 한국노년학
    • /
    • v.30 no.3
    • /
    • pp.793-802
    • /
    • 2010
  • The purpose of this study was to examine the influence of extreme heat on muscle function and muscle injury marker in elderly women. The subjects of this study were eight post-menopausal elderly women without any metabolic disease. All eight subjects were asked to perform the knee joint isokinetic exercise using isokinetic equipment (cybex) in the laboratory and experimental temperature within laboratory was adjusted to two conditions: extreme heat temperature(33±0.5℃) and normal temperature(20±0.5℃) maintained in 50±3% humidity conditions. Each experimental exercise was monitored and analyzed the change of HSP70, LDH and CK. Muscular functions (peak torque, total work, percentage of peak torque body weight, fatigue index, average power and total work) were significant differences at exercise between temperatural conditions (p<.05). In extreme heat temperature, muscular injury markers (HSP70, LDH and CK) were increased, threfore resulted in significantly higher than normal temperature(p<.05). These results show that extreme heat temperature can decrease muscle function in elderly women.