• 제목/요약/키워드: Temperature Gradient Model

검색결과 285건 처리시간 0.026초

현재와 미래 우리나라 겨울철 강수형태 변화 (Current and Future Changes in the Type of Wintertime Precipitation in South Korea)

  • 최광용;권원태
    • 대한지리학회지
    • /
    • 제43권1호
    • /
    • pp.1-19
    • /
    • 2008
  • 본 연구에서는 20세기 후반 관측자료를 분석하여 최근 한반도 겨울철 강수현상에 나타난 변화 양상과 그 원인을 밝히고, 21세기 후반 기후모델(GFDL 2.1) 자료를 바탕으로 미래의 겨울강수 변화추세를 예측해 보고자 한다. 61개 지점 관측자료를 분석한 결과 에 따르면, 지난 35년 동안$(1973/74\sim2006/07)$ 우리나라 겨울철($11\sim4$월) 총 강수량은 변화가 없었지만, 강설량은 약 4.3cm/10년의 비율로 감소하였다. 1980년대 후반 이후 강설일수가 감소하고, 강설강도가 약해지고, 강설계절의 길이가 줄어들면서 설수일율(전체 강수일 수에서 강설일이 차지하는 비율)도 낮아졌다. 이러한 패턴은 겨울철 강수형태가 점차 강설에서 강우의 형태로 바뀌어가고 있음을 보여준다. 이러한 우리나라 겨울철 강수 형태의 변화는 겨울철 양(+)의 북극진동(Arctic Oscillation)에 의해 한반도 주변의 겨울철 기압이 상승함에 따라 나타난 기온상승과 관련되어 있다. 1980년대 후반 이후의 동북아시아 지역의 기압 상승은 한반도 주변의 대기와 해양 온도를 차별적으로 상승시킴으로써 대기안정도 증가에 의한 눈구름 형성 감소와 관련된 대기-해양간 온도경도를 감소시켰다. 모델생산 미래$(2081\sim2100)$ 기후자료와 20세기 후반$(1981\sim2000)$ 기후자료 비교 분석 결과, 21세기 말에는 대기 중 온실기체의 양이 증가할수록 온난화가 강화되어 겨울철 강설기간이 더 짧아지고 강설불가능일이 더 증가할 것으로 예상된다.

Recurrent Neural Network Models for Prediction of the inside Temperature and Humidity in Greenhouse

  • Jung, Dae-Hyun;Kim, Hak-Jin;Park, Soo Hyun;Kim, Joon Yong
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.135-135
    • /
    • 2017
  • Greenhouse have been developed to provide the plants with good environmental conditions for cultivation crop, two major factors of which are the inside air temperature and humidity. The inside temperature are influenced by the heating systems, ventilators and for systems among others, which in turn are geverned by some type of controller. Likewise, humidity environment is the result of complex mass exchanges between the inside air and the several elements of the greenhouse and the outside boundaries. Most of the existing models are based on the energy balance method and heat balance equation for modelling the heat and mass fluxes and generating dynamic elements. However, greenhouse are classified as complex system, and need to make a sophisticated modeling. Furthermore, there is a difficulty in using classical control methods for complex process system due to the process are non linear and multi-output(MIMO) systems. In order to predict the time evolution of conditions in certain greenhouse as a function, we present here to use of recurrent neural networks(RNN) which has been used to implement the direct dynamics of the inside temperature and inside humidity of greenhouse. For the training, we used algorithm of a backpropagation Through Time (BPTT). Because the environmental parameters are shared by all time steps in the network, the gradient at each output depends not only on the calculations of the current time step, but also the previous time steps. The training data was emulated to 13 input variables during March 1 to 7, and the model was tested with database file of March 8. The RMSE of results of the temperature modeling was $0.976^{\circ}C$, and the RMSE of humidity simulation was 4.11%, which will be given to prove the performance of RNN in prediction of the greenhouse environment.

  • PDF

지중온도 경사를 이용한 효율적 지중에너지 이용 방안에 관한 연구 (A Study on Effective Energy Use of the Open Type Ground Heat Exchanger Using Underground Temperature Gradient)

  • 류형규;정민호;이병석;류효준;최현준;최항석
    • 설비공학논문집
    • /
    • 제26권9호
    • /
    • pp.401-408
    • /
    • 2014
  • This paper proposes an optimum operation method for open type ground heat exchangers. A series of TRTs and artificial heating/cooling operations were carried out while monitoring temperature in the hole of SCW. The ground temperature naturally increases with depth, but a switch between the cooling/heating mode results in a change in the distribution of ground temperature. The effect of the mode change was evaluated by performing LMTD and COMSOL multiphysics analysis for a reduced model with the depth of 150 m. As a result, in the cooling mode, the upstream operation is more efficient than the downstream operation and reduces EWT by $2.26^{\circ}C$. On the other hand, in the heating mode, the downstream operation is advantageous over the upstream operation and increases EWT by $3.19^{\circ}C$. The merit of the optimum operation will be enhanced for the typical dimension of SCW with a depth of 400~500 m. In the future, an open type ground heat exchanger system adopting the optimum operation with variation in the ground temperature will be used in practice.

바나듐의 고효율 회수를 위한 배소 전처리용 Rotary kiln 내 열화학적 모델인자 (Thermochemical Modeling Factors in Roasting Pre-treatment using a Rotary Kiln for Efficient Vanadium Recovery)

  • 이상훈;정경우
    • 자원리싸이클링
    • /
    • 제31권2호
    • /
    • pp.33-39
    • /
    • 2022
  • 본 연구에서는 Rotary kiln(RK)을 이용하여 바나듐 염배소 전처리시 적정온도를 유지하기 위한 열화학적 모델링 관련 인자에 대해 논의하였다. 관련 모델 메카니즘은 열화학 관련 반응속도모델, 열수지 및 열전달 등이며 이를 통해 rotary kiln내 온도분포를 직관적으로 추정할 수 있다. 이러한 작업을 통해 최적 염배소 온도인 1000 ℃(또는 약 1273 K) 근방을 kiln내에서 장기간 유지하는 것이 관건이다. 본 연구에서는 탄화수소(천연가스) 연료연소 및 광석 산화반응으로부터의 발열과 광석으로의 복사열전달 등을 산정하였다. 또한 열화학 측면에서 Rotary kiln내 적정 배소온도구역에서의 온도구배 완화를 위한 방안을 제시하였다.

자기장 및 열하중을 받는 복합재료 판의 동적 특성 (Dynamic Characteristics of Composite Plates Subjected to Electromagnetic and Thermal Fields)

  • 김성균;이근우;문제권;최종운;김영준;박상윤;송오섭
    • 한국소음진동공학회논문집
    • /
    • 제21권6호
    • /
    • pp.536-545
    • /
    • 2011
  • Structural model of laminated composite plates based on the first order shear deformable plate theory and subjected to a combination of magnetic and thermal fields is developed. Coupled equations of motion are derived via Hamilton's principle on the basis of electromagnetic equations (Faraday, Ampere, Ohm, and Lorentz equations) and thermal ones which are involved in constitutive equations. In order to reveal the implications of a number of geometrical and physical features of the model, free vibration of a composite plate immersed in a transversal magnetic field and subjected to a temperature gradient is considered. Special coupling effects between the magnetic-thermal-elastic fields are revealed in this paper.

Nonlinear vibration analysis of MSGT boron-nitride micro ribbon based mass sensor using DQEM

  • Mohammadimehr, M.;Monajemi, Ahmad A.
    • Smart Structures and Systems
    • /
    • 제18권5호
    • /
    • pp.1029-1062
    • /
    • 2016
  • In this research, the nonlinear free vibration analysis of boron-nitride micro ribbon (BNMR) on the Pasternak elastic foundation under electrical, mechanical and thermal loadings using modified strain gradient theory (MSGT) is studied. Employing the von $K{\acute{a}}rm{\acute{a}}n$ nonlinear geometry theory, the nonlinear equations of motion for the graphene micro ribbon (GMR) using Euler-Bernoulli beam model with considering attached mass and size effects based on Hamilton's principle is obtained. These equations are converted into the nonlinear ordinary differential equations by elimination of the time variable using Kantorovich time-averaging method. To determine nonlinear frequency of GMR under various boundary conditions, and considering mass effect, differential quadrature element method (DQEM) is used. Based on modified strain MSGT, the results of the current model are compared with the obtained results by classical and modified couple stress theories (CT and MCST). Furthermore, the effect of various parameters such as material length scale parameter, attached mass, temperature change, piezoelectric coefficient, two parameters of elastic foundations on the natural frequencies of BNMR is investigated. The results show that for all boundary conditions, by increasing the mass intensity in a fixed position, the linear and nonlinear natural frequency of the GMR reduces. In addition, with increasing of material length scale parameter, the frequency ratio decreases. This results can be used to design and control nano/micro devices and nano electronics to avoid resonance phenomenon.

Molecular Dynamic Simulation for Penetration of Carbon Nanotubes into an Array of Carbon Nnantotubes

  • Jang, Ilkwang;Jang, Yong Hoon
    • Tribology and Lubricants
    • /
    • 제36권5호
    • /
    • pp.290-296
    • /
    • 2020
  • When two layers of carbon nanotube (CNT) arrays are loaded to mate, the free ends of individual CNTs come into contact at the interface of the two layers. This leads to a higher contact resistance due to a smaller contact region. However, when the free CNT ends of one array penetrate into the mating array, the contact region increases, effectively lowering the contact resistance. To explore the penetration of mating CNTs, we perform molecular dynamic simulations of a simple unit cell model, incorporating four CNTs in the lower array layer coupled with a single moving CNT on the upper layer. The interaction with neighboring CNTs is modelled by long-range carbon bond order potential (LCBOP I). The model structure is optimized by energy minimization through the conjugate gradient method. A NVT ensemble is used for maintain a room temperature during simulation. The time integration is performed through the velocity-Verlet algorithm. A significant vibrational motion of CNTs is captured when penetration is not available, resulting in a specific vibration mode with a high frequency. Due to this vibrational behavior, the random behaviors of CNT motion for predicting the penetration are confirmed under the specific gap distances between CNTs. Thus, the probability of penetration is examined according to the gap distance between CNTs in the lower array and the aspect ratio of CNTs. The penetration is significantly affected by the vibration mode due to the van der Waals forces between CNTs.

대기 안정 상태에 따른 풍력 단지 소음 전파 예측 (Prediction of Wind Farm Noise with Atmospheric Stability)

  • 손은국;이승훈;전민우;이수갑
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.42.2-42.2
    • /
    • 2011
  • Noise generated from wind turbines has been predicted by numerical methods. Sound pressure level(SPL) on the turbines is predicted after aerodynamic analysis is carried out by Wind Turbine Flow, Aeroacoustics and Structure analysis (WINFAS) code. The level of each panel of acoustic sphere is determined by the sum of tonal, turbulence ingestion and airfoil self noise. With the noise source database, the acoustic sphere, SPL on the ground is calculated using the model based on acoustic ray theory. The model has been designed to consider the effects on the condition of terrain and atmosphere. The variations of SPL on the ground occur not only because of the different source level but also because of the nonuniform distributions of the sound speed along the height. Hence, the profile of an effective sound speed which is the sum of the contribution of sound speed to a temperature gradient and a wind speed variation is used by the theory based on atmospheric stability. With the integrated numerical method, the prediction of sound propagation on the wind farm is carried out with the states of the atmospheric stability.

  • PDF

Thermomechanical Properties of Functionally Graded $Al-SiC_p$ Composites

  • Song, Dae-Hyun;Park, Yong-Ha;Park, Yong-Ho;Park, Ik-Min;Cho, Kyung-Mox
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.85-86
    • /
    • 2006
  • A theoretical model is applied to the analysis of thermomechanical properties of $Al-SiC_p$ FGMs in this study. Functionally graded $Al-SiC_p$ composites ($Al-SiC_p$ FGMs) consisted with 10 layers gradually changing volume fractions of Al and $SiC_p$ were fabricated using the pressureless infiltration technique. $Al-SiC_p$ FGMs plates of total thickness of 3mm, 5mm and 7mm with fairly uniform distribution and compositional gradient of $SiC_p$ reinforcement in the Al matrix throughout the thickness was successfully fabricated. The curvature of $Al-SiC_p$ FGM plates was measured to check the internal stress distribution predicted via a theoretical model for the analysis of thermo-mechanical deformation. The evolution of curvature and also internal stresses in response to temperature variations could be predicted for the different combinations of geometric thickness of FGM plates. Theoretical prediction of thermally induced stress distribution makes it possible to design FGM structures without any critical failure during the usage of them.

  • PDF

Evaluation of Thermal Stratification Effect in a Long Horizontal Pipeline with Turbulent Natural Convection

  • Park, Man-Heung;Ahn, Jang-Sun;Nam, Seung-Deog
    • Nuclear Engineering and Technology
    • /
    • 제30권6호
    • /
    • pp.581-591
    • /
    • 1998
  • Numerical analysis was peformed for the two-dimensional turbulent natural convection for a long horizontal line with different end temperatures. The turbulent model has been applied a standard k-$\varepsilon$ two equation model of turbulence similar to that the proposed by the Launder and Spalding. The dimensionless governing equations are solved by using SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm which is developed using control volumes and staggered grids. The numerical results are verified by comparison with the operating PWR test data. The analysis focuses on the effects of variation of the heat transfer rates at the pipe surface, the thermal conductivities of the pipe material and the thickness of the pipe wall on the thermal stratification. The results show that the heat transfer rate at the pipe surface is the controlling parameter for mitigating of thermal stratification in the long horizontal pipe. A significant reduction and disappearance of the thermal stratification phenomenon is observed at the Biot number of 4.82$\times$10$^{-1}$ . The results also show that the increment of the thermal conductivity and thickness of the wall weakens a little the thermal stratification and somewhat reduces temperature gradient of y-direction in the pipe wall. These effects are however minor, when compared with those due to the variation of the heat transfer rates at the surface of the pipe wall.

  • PDF