• 제목/요약/키워드: Temperature Gradient Model

검색결과 285건 처리시간 0.026초

Numerical simulation of non-isothermal flow in oil reservoirs using a two-equation model

  • dos Santos Heringer, Juan Diego;de Souza Debossam, Joao Gabriel;de Souza, Grazione;Souto, Helio Pedro Amaral
    • Coupled systems mechanics
    • /
    • 제8권2호
    • /
    • pp.147-168
    • /
    • 2019
  • This work aims to simulate three-dimensional heavy oil flow in a reservoir with heater-wells. Mass, momentum and energy balances, as well as correlations for rock and fluid properties, are used to obtain non-linear partial differential equations for the fluid pressure and temperature, and for the rock temperature. Heat transfer is simulated using a two-equation model that is more appropriate when fluid and rock have very different thermal properties, and we also perform comparisons between one- and two-equation models. The governing equations are discretized using the Finite Volume Method. For the numerical solution, we apply a linearization and an operator splitting. As a consequence, three algebraic subsystems of linearized equations are solved using the Conjugate Gradient Method. The results obtained show the suitability of the numerical method and the technical feasibility of heating the reservoir with static equipment.

가스터빈블레이드에서 일렬의 제트에 의한 막냉각특성 연구 (Film Cooling by a Row of Jets in a Gas Turbine Blade)

  • 이용덕;이재헌
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1851-1865
    • /
    • 1994
  • The objective of the present study is to predict the film cooling effectiveness by a row of holes at various injection ratios and injection angles. Numerical calculations have been performed to investigate the characteristics of flow and temperature distributions in a region near the down-stream of injection hole including the region of adverse pressure gradient. The elliptic turbulent 3-dimensional governing equations with variable thermal properties using the low-Reynolds number k-$\bar{varepsilon}$ model was solved by SIMPLE algorithm. The results showed that the presence of adverse pressure gradient and secondary vortex in the region near the downstream of injection hole induces large temperature gradent. The $45^{\circ}$ injection has higher averaged film cooling effectiveness than $60^{\circ}$ injection. But neverthless the $90^{\circ}$ injection has greater deviation from a flat plate than $45^{\circ}$ and $60^{\circ}$ injection, the $90^{\circ}$ injection has higher averaged film cooling effectiveness than $45^{\circ}$ and $60^{\circ}$ injection in the region near the downstream of injection hole.

수정 이방성 분산 복원을 이용한 영상 분류 (Image Classification Using Modified Anisotropic Diffusion Restoration)

  • 이상훈
    • 대한원격탐사학회지
    • /
    • 제19권6호
    • /
    • pp.479-490
    • /
    • 2003
  • This study proposed a modified anisotropic diffusion restoration for image classification. The anisotropic diffusion restoration uses a probabilistic model based on Markov random field, which represents geographical connectedness existing in many remotely sensed images, and restores them through an iterative diffusion processing. In every iteration, the bonding-strength coefficient associated with the spatial connectedness is adaptively estimated as a function of brightness gradient. The gradient function involves a constant called "temperature", which determines the amount of discontinuity and is continuously decreased in the iterations. In this study, the proposed method has been extensively evaluated using simulated images that were generated from various patterns. These patterns represent the types of natural and artificial land-use. The simulated images were restored by the modified anisotropic diffusion technique, and then classified by a multistage hierarchical clustering classification. The classification results were compared to them of the non-restored simulation images. The restoration with an appropriate temperature considerably reduces error in classification, especially for noisy images. This study made experiments on the satellite images remotely sensed on the Korean peninsula. The experimental results show that the proposed approach is also very effective on image classification in remote sensing.

실측에 의한 강박스거더교의 상하 온도차에 대한 연구 (A Study on the Vertical Temperature Difference of Steel Box Girder Bridge by Field Measurement)

  • 이성행;박영춘
    • 한국산학기술학회논문지
    • /
    • 제19권8호
    • /
    • pp.545-551
    • /
    • 2018
  • 외국 설계기준에서 제시하고 있는 단면 온도 경사모델의 국내적용을 위하여, 강상자형 교량 시험체를 폭 2.0m, 높이 2.0m, 길이 3.0m, 상부슬래브 두께 0.2m로 제작하고, 2016년 여름동안 시험체의 온도를 측정하였다. 측정 데이터의 신뢰성을 검증하기 위하여 측정된 대기기온과 기상청의 대기기온을 비교 검토하였다. 측정된 24개의 온도 측정 게이지 중 Euro code와 온도차를 비교 할 수 있는 4개의 온도 게이지를 선정하고, 측정온도의 분포를 분석하였다. 각 지점에서 최대 온도차를 선정하기 위한 기준 대기온도를 결정하여, 최대 최저 온도를 계산하고, 이를 바탕으로 온도차(경사)를 산정하고 온도차 모델을 제시하였다. 제시된 온도차 모델은 Euro code의 온도분포와 비교할 때 슬래브 최상단에서 $0.9^{\circ}C$, 중앙 경사부에서 $0.3{\sim}0.4^{\circ}C$의 온도차를 보여 Euro code와 유사한 결과를 보였다. 산정한 표준오차 계수는 표준오차의 2.71~2.84배로 산정되었고, 일정한 범위의 값을 보였다. 제시된 온도차 모델은 국내 온도설계의 온도차 산정 시 기본 자료로 활용될 수 있을 것으로 판단된다.

콘크리트 바닥판의 아스팔트 두께에 따른 강박스거더교의 상하 온도차 (Vertical Temperature Difference of Steel Box Girder Bridge Considering Asphalt Thickness of Concrete Deck)

  • 이성행
    • 한국산학기술학회논문지
    • /
    • 제20권3호
    • /
    • pp.602-608
    • /
    • 2019
  • 본 연구에서는 강박스거더교 바닥판의 아스팔트 두께에 따른 단면 상하 온도차를 산정하고, 이에 따른 설계기준의 자료를 제공하고자 하였다. 아스팔트 두께 0mm, 50mm, 100m, 150mm의 4개 강박스거더 모형시험체를 제작하였다. 각 모형에 17~23개의 온도 센서를 상부 콘크리트와 강박스거더에 부착하였다. 이 센서 중 Euro code와 온도차를 비교 할 수 있는 6개의 온도 게이지를 선정하였다. 각 모형의 기준 대기온도에서 최대 온도와 최저 온도를 계산하고, 이를 바탕으로 온도차(경사)를 산정하여, 4개 각 모형에서 온도차 모델을 제시하였다. 0mm ~ 100mm 온도차 모델은 슬래브 최상단에서 Euro code의 온도차와 비교할 때 -0.9~-1.5도 더 낮은 온도차를 보였다. 전체적으로 측정된 온도차는 Euro code와 비교하여 5.45%~8.33%정도의 오차가 있음을 확인하였다. 산정된 온도와 평균온도의 차를 표준오차의 배수로 산정한 표준오차 계수는 최상단과 최하 단에서 평균 2.50 ~ 2.51배의 값으로 일정한 범위에서 산정되었다. 제시된 온도차 모델은 국내 교량 온도설계 온도차 기준 산정 시 기본 자료로 활용될 수 있을 것으로 판단된다.

대기 혼합층 발달 과정의 모형 실험과 수치 해석 (Laboratory Experimentals and Numerical Analysis for Development of a Atmospheric Mixed Layer)

  • 이화운
    • 한국환경과학회지
    • /
    • 제2권1호
    • /
    • pp.17-26
    • /
    • 1993
  • The layer that is directly influenced by ground surface is called the atmospheric boutsdary layer in comparison with the free atmosphere of higher layer. In the boundary layer, the changes of wind, temperature and coefficient of turbulent diffusion in altitude are large and have great influences an atmospheric diffusion. The purpose of this paper is to express the structure and characteristics of development of mixed layer by using laboratory experiment and numerical simulation. Laboratory experiment using water tank are performed that closely simulate the process of break up of nocturnal surface inversion above heated surface and its phenomena are analyzed by the use of horizontally averaged temperature which is observed. The result obtained from the laboratory experiment is compared with theoretical ones from ; \textsc{k}-\varepsilon numerical model. The results are summarized as follows. 1) The horizontally averaged temperature was found to vary smoothly with height and the mixed layer developed obviously being affected by the convection. 2) The mean height of mixed layer may be predicted as a function of time, knowing the mean initial temperature gradient. The experimental values are associated well with the theoretical values computed for value of the universal constant $C_r$= 0.16, our $C_r$ value is little smaller than the value found by Townsend and Deardoru et al.

  • PDF

인공위성 영상기의 열모델링 방법 (THERMAL MODELING TECHNIQUE FOR A SATELLITE IMAGER)

  • 김정훈;전형열;유명종;김병수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.174-180
    • /
    • 2010
  • Conductive and radiative thermal model configurations of an imager of a geostationary satellite are presented. A two-plane method is introduced for three dimensional conductive coupling which is not able to be treated by thin shell plate thermal modeling technique. Especially the two-plane method is applied to massive matters and PIP(Payload Interface Plate) in the imager model. Some massive matters in the thermal model are modified by adequate correction factors or equivalent thickness in order to obtain the numerical results of thermal modeling to be consistent with the analytic model. More detailed nodal breakdown is specially employed to the object which has the rapid temperature gradient expected by a rule of thumb. This detailed thermal model of the imager is supposed to be used for detailed analyses and test predictions, and be correlated with the thermal vacuum test results before final in-flight predictions.

  • PDF

자체변형에 의한 부분지지조건을 갖는 콘크리트 슬래브 (Concrete Slab with Partial Supports due to its Deformation)

  • 한승환;유태석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.429-432
    • /
    • 1999
  • The concrete slab on the foundation may have curling and warping deformations due to moisture and temperature gradient of its section. These deformations may change the support conditions of concrete slabs, and cause higher level of stresses than expected. This study was performed to verify the effect of partial support condition of concrete slab on the foundation due to its deformations and to develop the useful analytic method for describing these phenomenons. The partial support condition verified by FWD test results, and it was concluded that the gap model could be useful in analysing the concrete slab with partial support conditions.

  • PDF

Effect of thermal gradients on stress/strain distributions in a thin circular symmetric plate

  • Aleksandrova, Nelli N.
    • Structural Engineering and Mechanics
    • /
    • 제58권4호
    • /
    • pp.627-639
    • /
    • 2016
  • The analysis of thermally induced stresses in engineering structures is a very important and necessary task with respect to design and modeling of pressurized containers, heat exchangers, aircrafts segments, etc. to prevent them from failure and improve working conditions. So, the purpose of this study is to investigate elasto-plastic thermal stresses and deformations in a thin annular plate embedded into rigid container. To this end, analytical research devoted to mathematically and physically rigorous stress/strain analysis is performed. In order to evaluate the effect of logarithmic thermal gradients, commonly applied to structures which incorporate thin plate geometries, different thermal parameters such as temperature mismatch and varying constraint temperature were introduced into the model of elastic perfectly-plastic annular plate obeying the von Mises yield criterion with its associated flow rule. The results obtained may be used in sensitive to temperature differences aircraft structures where the thermal effects on equipment must be kept in mind.

Delineation of Groundwater and Estimation of Seepage Velocity Using High-Resolution Distributed Fiber-Optic Sensor

  • Chang, Ki-Tae;Pham, Quy-Ngoc
    • 한국지반환경공학회 논문집
    • /
    • 제16권6호
    • /
    • pp.39-43
    • /
    • 2015
  • This study extends the Distributed Temperature Sensing (DTS) application to delineate the saturated zones in shallow sediment and evaluate the groundwater flow in both downward and upward directions. Dry, partially and fully saturated zones and water level in the subsurface can be recognized from this study. High resolution seepage velocity in vertical direction was estimated from the temperature data in the fully saturated zone. By a single profile, water level can be detected and seepage velocity in saturated zone can be estimated. Furthermore, thermal gradient analysis serves as a new technique to verify unsaturated and saturated zones in the subsurface. The vertical seepage velocity distribution in the recognized saturated zone is then analyzed with improvement of Bredehoeft and Papaopulos' model. This new approach provides promising potential in real-time monitoring of groundwater movement.