• Title/Summary/Keyword: Temperature Drop Efficiency

Search Result 145, Processing Time 0.027 seconds

A Study on Filtration Performance Test with Electrostatically Enhanced Fabric Filter (정전형여과집진방식에서 여과특성에 관한 연구)

  • 천중국;박출재;최금찬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.361-367
    • /
    • 1995
  • This study has been carried out to investigate the filteration performance of Electrostatically Stimulated Fabric Filter(ESFF) at high temperature condition. The electric field was maintained parallel to the fabric surface. The benefits of ESFF are lower residual pressure drop, improvement of fine particle removal efficiency and increasing reduced rate of pressure drop during a filteration cycle, stable operation at higher filtering velocities. According to the variance of filtering velocities and dust loadings, the results are summarized as follows; By imposing an electric field on the filter, the reduced rate of pressure drop was 7.sim.18% at room temperature, and when filtering velocity was 1.8m/min and dust loading was 1g/m$^{3}$, the value of reduced rate of pressure drop was shown the highest. Under the electric field around the filter, the reduced rate of pressure drop was 10.sim.35% at high temperature, and when filtering velocity was 1.8m/min and dust loading was 1g/m$^{3}$, the value of reduced rate of pressure drop was shown the highest. Most of all, at high temperature, the value of reduced rate of pressure drop was resulted to 25%. Also the collecting efficiency was shown clearly improved. By the SEM photo analysis, the number of penetrated particles at the Conventional Fabric Filter was approximately two times that of Electrostatically Stimulated Fabric Filter.

  • PDF

Pressurized Drop Tube Furnace Tests of Global Gasification Characteristics of Coal (PDTF를 이용한 석탄가스화 특성 실험)

  • 신용승;최상민;안달홍
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.560-566
    • /
    • 1999
  • PDTF (Pressurized drop tube furnace) experiments using variations of temperature, oxygen/coal ratio, steam/coal and pressure with Roto coal (Sub A) were performed in order to investigate the effects of these experimental parameters on global gasification characteristics at elevated pressure. The results shows that the gasification at elevated pressure is more profitable than that at atmospheric pressure considering the carbon conversion and cold gas efficiency. The oxygen/coal ratio at which maximum cold gas efficiency was appeared ranged from 0.5 to 0.7 g/g. only when the temperature is sufficiently high enough, the raise of steam/coal ratio brings improvement of cold gas efficiency. As the pressure increased, the volume of carbon conversion by heterogeneous reaction increased but the volume of carbon conversion by pyrolysis decreased relatively.

  • PDF

Pressurized drop tube furnace tests of global gasification characteristics of coal (PDTF를 이용한 석탄가스화 특성 실험)

  • 신용승;최상민;안달홍
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.23-31
    • /
    • 1999
  • PDTF(Pressurized drop tube furnace) experiments using varied temperature, oxygen/coal ratio, steam/coal ratio and pressure with Roto coal(Sub A) were performed in order to investigate the effects of these experimental parameters on global gasification characteristics at elevated pressure. The results shows that the gasification at elevated pressure is more profitable than that at atmospheric pressure considering the carbon conversion and cold gas efficiency. The oxygen/coal ratio at which maximum cold gas efficiency was appeared ranged from 0.5 to 0.7g/g. Only when the temperature is sufficiently high enough, the raise of steam/coal ratio brings improvement of cold gas efficiency. As the pressure increased, the volume of carbon conversion by heterogeneous reaction increased but the volume of carbon conversion by pyrolysis decreased relatively.

  • PDF

A numerical fluid dynamic study of a high temperature operating cyclone (고온 작동 싸이클론 유체역학적 거동 전산 연구)

  • Shin, Mi-Soo;Kim, Hey-Suk;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.1033-1040
    • /
    • 2009
  • One thing to note in cyclone operation and design is to minimize the pressure drop with the enhancement of the efficiency of dust collection. This can be facilitated by the detailed resolution of complex fluid flow occurring inside a cyclone. To this end, the main objective of this study was to obtain the detailed fluid dynamics by the development of a reliable computation method and thereby to figure out the physics of dust collection mechanism for more extreme environment caused by high temperature and pressure condition. First of all, the computer program developed was evaluated against experimental result. That is, the numerical calculation predicts well the data of experimental pressure drop as a function of flow rate for the elevated pressure and temperature condition employed in this study. The increase of pressure and temperature generally affects significantly the collection efficiency of fine particle but the effect of pressure and temperature appears contrary each other. Therefore, the decrease of collection efficiency caused by the high operating temperature mainly due to the decrease of gaseous density can be remedied by increase of operating pressure. After the evaluation of the program, a series of parametric investigations are performed in terms of major cyclone design or operating parameters such as tangential velocity and vortex finder diameter for dusts of a certain range of particle diameters, etc. As expected, tangential velocity plays the most important effect on the collection efficiency. And the efficiency was not affected significantly by the change of the length of vortex finder but the diameter of vortex finder plays an important role for the enhancement of collection efficiency.

Characteristics on Variation of Temperature and Ozone Concentration during the Partial Solar Eclipse Event of 22 July 2009 at Busan (2009년 7월 22일 부분일식 발생 시 부산지역 기온과 오존농도의 변화 특성)

  • Jeon, Byung-Il;Oh, In-Bo
    • Journal of Environmental Science International
    • /
    • v.20 no.8
    • /
    • pp.1049-1059
    • /
    • 2011
  • This paper examines the effects of the partial solar eclipse of 22 July 2009 across the Korean peninsular on surface temperature and ozone concentrations in over the Busan metropolitan region (BMR). The observed data in the BMR demonstrated that the solar eclipse phenomenon clearly affects the surface ozone concentration as well as the air temperature. The decrease in temperature ranging from 1.2 to $5.4^{\circ}C$ was observed at 11 meteorological sites during the eclipse as a consequence of the solar radiation decrease. A large temperature drop exceeding $4^{\circ}C$ was observed at most area (8 sites) of the BMR. Significant ozone drop (18~29 ppb) was also observed during the eclipse mainly due to the decreased efficiency of the photochemical ozone formation. The ozone concentration started to decrease at approximately 1 to 2 hours after the event and reached its minimum value for a half hour to 2 hours after maximum eclipse. The rate of ozone fall ranged between 0.18 and 0.49 ppb/min. The comparison between ozone measurements and the expected values derived from the fitted curve analysis showed that the maximum drop in ozone concentrations occurred at noon or 1 PM and was pronounced at industrial areas.

Aluminum and Plastic Heat Exchange Element : A Performance Comparison for Cooling of Telecommunication Cabinet (통신 함체 냉각용 알루미늄과 플라스틱 열교환 소자의 성능 비교)

  • Kim, Nae-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.279-288
    • /
    • 2017
  • Heat generation rate in a telecommunication cabinet increases due to the continued usage of mobile devices. Insufficient removal of heat intensifies the cabinet temperature, resulting in the malfunction of electronic devices. In this study, we assessed both aluminum and plastic heat exchangers used for cooling of the telecommunication cabinet, and compared the results against theoretical predictions. The aluminum heat exchanger was composed of counter flow parallel channels of 4.5 mm pitch, and the plastic heat exchangers were composed of cross flow triangular channels of 2.0 mm pitch. Samples were made by installing two plastic heat exchangers in both series and parallel. Results showed that the heat transfer rate was highest for the series cross flow heat exchanger, and was least for the aluminum heat exchanger. The temperature efficiency of the series cross flow heat exchanger was 59% greater than that of the aluminum heat exchanger, and was 4.3% greater than that of the parallel cross flow heat exchanger. In contrast, the pressure drop of the parallel cross flow heat exchanger was significantly lower than other samples. The heat exchange efficiency was also the largest for the parallel cross flow heat exchanger. The theoretical analysis predicted the temperature efficiency to be within 3.3%, and the pressure drop within 6.1%.

Effect of Particulate Matter and Ash Amount on Pressure Drop and Flow Uniformity of Diesel Particulate Filter Reduction System (입자상물질과 Ash양이 디젤매연여과장치 내의 배압 및 유동균일도에 미치는 영향)

  • Kim, YunJi;Han, DanBee;Seo, TaeWon;Oh, KwangChul;Baek, YoungSoon
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.22-29
    • /
    • 2020
  • Recently, as the fine dust is increased and the emission regulations of diesel engines have been tightened, interest in diesel soot filtration devices has rapidly increased. There is specifically a demand for the technological development of higher diesel exhaust gas after-treatment device efficiency. As part of this, many studies were conducted to increase exhaust gas treatment efficiency by improving the flow uniformity of the exhaust gas in the diesel particulate filter (DPF) and reducing the pressure drop between the inlet and the outlet of DPF. In this study, the effects of pressure drop by the flow rate and temperature of exhaust gas, DPF I/O ratio, Ash, and PM amount in diesel reduction device were simulated via a 12" diameter DPF and diesel oxidation catalyst (DOC) using ANSYS Fluent. As the flow rate and temperature decreased, the pressure drop decreased, whereas the PM amount affected the pressure drop more than the ash amount and the pressure drop was lower in anisotropic DPF than isotropic DPF. In the case of DPF flow uniformity, it was constant regardless of the various variables of DPF. In ESC and ETC conditions, the filtration efficiency for PM was similar regardless of anisotropic and isotropic DPF, but the filtration efficiency for PN (particle number) was higher in anisotropic DPF than isotropic DPF.

A Study on the Reverse Cleaning Flow Characteristics for High Temperature and High Pressure Filtration (고온 고압 집진을 위한 역세정 유동장의 특성에 관한 연구)

  • 김장우;정진도;김은권
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.1
    • /
    • pp.25-31
    • /
    • 2003
  • Ceramic filter has been demonstrated as an attractive system to improve the thermal efficiency and to reduce the effluent pollutants. Removal of particulates from the hot gas stream is very important in air pollution control. In particular, the elimination of the particulate matters discharged from a gas turbine at high temperature can prevent the corrosion inside the IGCC. In this study, a Lab. scale test and numerical simulation were carried out to comprehend the relationship between pulse jet pressure and recovery of pressure drop and to characterize the reverse cleaning flow through a ceramic fil-ter element under high temperature and high pressure. When the pulse-jet pressures were 2, 3 and 4 kg/$ extrm{cm}^2$, the cleaning effect increase of about 10~30% by recovery of pressure drop caused by pulse pressure. Cleaning effect at 45$0^{\circ}C$ was greater than that at 55$0^{\circ}C$ or 650$^{\circ}$ for the same pulse pressure. According to the result of the present simulation, high pressure has been formed in terminal and central regions in our models and temperature distribution caused by pulse air is to be uniform comparatively on inner surface of filter.

System Performance Variation for Relative Location of Pre-swirl Nozzles and Receiver Holes in Radial On-Board Injection Type Pre-swirl System (반경방향 분사방식 프리스월 시스템의 프리스월 노즐과 리시버 홀의 상대적 위치에 따른 시스템 성능변화)

  • Lee, Jonggeon;Lee, Hyungyu;Cho, Geonhwan;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.1
    • /
    • pp.43-53
    • /
    • 2020
  • The effect of the relative location between pre-swirl nozzle and receiver hole on the performance of radial on-board injection type pre-swirl system was analyzed. In this study, tendency of the change of discharge coefficient and temperature drop efficiency were analyzed for 20 design points through the combination of 5 pre-swirl nozzle location and 4 receiver hole location. Discharge coefficient of system tended to be similar to the pressure ratio of the pre-swirl nozzle. System performance variation occurred as the flow structure in the cavity was affected by the surface, and the influence of the stationary surface is greater than that of the rotating surface. Discharge coefficient of system changed -1.39% to 1.25% and temperature drop efficiency changed -5.41% to 2.94% refer to reference design point.

Study on the In-Furnace Desulfurization for Oxy-Fuel Combustion Flue Gases Using Drop Tube Furnace (Drop Tube Furnace를 이용한 순산소연소 배가스 로내탈황에 관한 연구)

  • An, Young-Mo;Jo, Hang-Dae;Choi, Won-kil;Park, Yeong-Sung;Keel, Sang-In;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.512-517
    • /
    • 2009
  • $SO_2$ concentrations in oxy-fuel combustion flue gases increases about three times as high as that of conventional air combustion system owing to the flue gas recirculation for the control of combustion temperature. So the desulfurization reaction is different from that of the conventional air combustion system due to exceptionally high $CO_2$ and $SO_2$ concentration. In this study, drop tube furnace(DTF) system was used to investigate the desulfurization characteristics of limestone in oxy-fuel combustion furnace. The experiments were performed under $O_2/CO_2$ atmosphere to examine the effect of operating variables such as reaction temperatures, Ca/S ratios and inlet $SO_2$ concentrations on the $SO_2$ removal efficiencies. $SO_2$ removal efficiency increased with reaction temperature, Ca/S ratio and inlet $SO_2$ concentration. And the addition of water vapor resulted in about 4~6% of increase in $SO_2$ removal efficiency.