• Title/Summary/Keyword: Temperature Difference Energy

Search Result 1,101, Processing Time 0.024 seconds

The Relationship between Clothing Microclimate and Physiological Responses at $15^{\circ}C$ Environment ($15^{\circ}C$ 환경에서 의복기후와 인체생리반응과의 관련성)

  • Park, Joon-Hee;Choi, Jeong-Wha
    • Journal of the Korean Home Economics Association
    • /
    • v.46 no.4
    • /
    • pp.97-105
    • /
    • 2008
  • The objective of this study is to investigate the relationship between clothing microclimate and physiological responses, including subjective sensations, when, in a $15^{\circ}C$ environment, a range of temperatures inside clothing is broadly produced from using various combinations of upper and lower garments. Six male subjects participated in the investigation and the results were as follows. For all types of inside garments, the temperature of the clothing was lower than the skin temperature for the whole body in each case. The mean temperature for inside clothing ($\bar{T}_{cl}$) significantly showed the highest correlation with mean weighted skin temperature (r = 0.816) and was less positively correlated with the temperature of the inside clothing at the chest (r = 0.326) (p < .01). Values for both the energy expenditure and the heart rate were less positively correlated with the clothing microclimate (p < .01). The change of body heat content showed a negative correlation with the surface temperature of the innermost clothing (r = -0.519) and there was a difference between the innermost surface temperature and the outermost surface temperature of the clothing at the chest (r = -0.577). As td increased, the increase of body heat content declined (p < .01). There was a negative correlation between body fat and some of the temperatures inside the clothing (p < .01) and body fat had no significant correlation with the humidity inside the clothing. Subjective sensations were more highly correlated with $\bar{T}_{cl}$ than with the temperature of the inside clothing at the chest and had not significantly correlation with the humidity of the inside clothing. In conclusion, through these results, it can be seen that the temperature inside the clothing was related to various physiological responses and subjective sensations, and that the mean temperature of the inside clothing ($\bar{T}_{cl}$) showed a higher relationship with the temperature of the inside clothing at the abdomen than that at the chest.

Excitation Processes of the CH4 Aurorae of Jupiter and Saturn

  • Kim, Sang Joon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.72.1-72.1
    • /
    • 2018
  • Recently, an analysis of 3-micron spectra of CH4 line emission from our Gemini/GNIRS observations of Jupiter's polar regions yielded an unexpected result: The homopause (~1 microbar pressure level) located directly above the long-lasting 8-micron CH4 north-polar hot spot (Great 8-micron Hot Spot: GHS) is cool compared with the temperatures of nearby auroral regions (Kim et al. 2017). Most of the 8-micron emission of the GHS originates from CH4 at the ~1 mbar level (i.e., deeper in the stratosphere, where cooling time is several years), much longer than at the altitude of the homopause. We propose a mechanism to explain the temperature difference: locally-fixed and transient, but energetic auroral particles, which can penetrate to the 1 mbar level and deposit energy there creating and maintaining the GHS. For Saturn, thus far we have not detected distinctive 8-micron nor 3-micron CH4 hot spots in the polar regions. We will present a possible implication for this difference between Jupiter and Saturn.

  • PDF

Effects of Earth-Tube Characteristics on the Soil-Air Heat Exchanger Performances (지중매설관의 특성이 토양 - 공기 열교환기 성능에 미치는 영향)

  • 김영복
    • Journal of Biosystems Engineering
    • /
    • v.22 no.4
    • /
    • pp.459-468
    • /
    • 1997
  • To optimize the design and operation of a soil- air heat exchanger system, the effects of variables characterizing system design and operation on the performance of the system were analyzed by a theoretical model which included the three-dimensional transient heat conduction equation. The solution of the theoretical model was acquired by a computer program that uses Finite Difference Methods and Gauss-Seidel iteration computation, in which the time discretization scheme was an implicit difference appoximation. The computer program was validated first by comparison of the results for different grid sizes. Air outlet temperature, energy gain, and heat exchange efficiency of the system were analyzed based upon the tube diameter, tube length, tube thickness, and tube thermal diffusivity.

  • PDF

Fuzzy Defrost Control of the Multi-Type Heat Pump System (퍼지룰을 이용한 멀티형 히트펌프 시스템의 제상 제어)

  • 한도영;김경훈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.8
    • /
    • pp.711-716
    • /
    • 2000
  • A fuzzy defrost control algorithm for the multi-type heat pump system was developed. In the fuzzy defrost control algorithm, the air temperature difference at the outdoor unit and the refrigerant pressure difference at the compressor were used as input variables, and the defrost starting time and the defrost time interval were used as output variables. This fuzzy algorithm was applied to the multi-type heat pump system and tested in the five dynamic environmental chambers. Test results show that the newly developed control algorithm is more effective than the conventional control algorithm in the removal of frost formed at the outdoor unit of the heat pump.

  • PDF

Distribution of Relative Evapotranspiration Availability using Satellite Data in Daegu Metropolitan (위성 자료를 이용한 대구광역시의 상대적 증발산 효율 분포)

  • Kim, Hae-Dong;Im, Jin-Wook;Lee, Soon-Hwan
    • Journal of the Korean earth science society
    • /
    • v.27 no.6
    • /
    • pp.677-686
    • /
    • 2006
  • Surface evapotranspiration is one of the most important factors to determine the surface energy budget, and its estimation is strongly related with the accuracy of weather forecasting. Surface evapotranspiration over Daegu Metropolitan was estimated using high resolution LANDSAT TM data. The estimation of surface evapotranspiration is based on the relationship between surface radiative temperature and vegetation index provided by a TM sensor. The distribution of NDVI (Normalized Difference of Vegetation Index) corresponds well with that of land-used in Deagu Metropolitan. The temperature of several part of downtown in Deagu metropolitan is lower in comparison with the averaged radiative temperature. This is caused by the high evapotranspiration from dense vegetation like DooRyu Park in Deagu Metropolitan. But, weak evapotranspiration availability is distinguished over the central part of downtown and the difference of evapotranspiration availability on industrial complexes and residential area is also clear.

BEAVRS benchmark analyses by DeCART stand-alone calculations and comparison with DeCART/MATRA multi-physics coupling calculations

  • Park, Ho Jin;Kim, Seong Jin;Kwon, Hyuk;Cho, Jin Young
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1896-1906
    • /
    • 2020
  • The BEAVRS (Benchmark for Evaluation and Validation of Reactor Simulation) benchmark calculations were performed by DeCART stand-alone and DeCART/MATRA multi-physics coupled code system to verify their accuracy. The solutions of DeCART stand-alone calculations for the control rod bank worth, detector signal, isothermal temperature coefficient, and critical boron concentration agreed very well with the measurements. The root-mean-square errors of the boron letdown curves for two-cycles were less than about 20 ppm, while the individual and total control rod bank worth agreed well within 7.3% and 2.4%, respectively. For the BEAVRS benchmark calculations at the beginning of burnup, the difference between DeCART simplified thermal-hydraulic stand-alone and DeCART/MATRA coupled calculations were not significantly large. Therefore, it is concluded that both the DeCART stand-alone code and the DeCART/MATRA multi-physics coupled code system have the capabilities to generate high fidelity transport solutions at core follow calculations.

Study on long-term Performance characteristics of various solar thermal system for heating protected horticulture system (태양열 시설원예 난방시스템의 장기성능 특성 분석 연구)

  • Lee, Sang-Nam;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.3
    • /
    • pp.1-8
    • /
    • 2006
  • The objective of this research is to study on the analysis of long-term performance characteristics of various solar thermal system for heating protected horticulture system for reducing heating cost, increasing the value of product by environment control, and developing advanced culture technology by deploying solar thermal system. Long term field test for the demonstration was carried out in horticulture complex in Jeju Island. Reliability and economic aspect of the system which was operated complementary with thermal storage and solar hot water generation were analyzed by investigating collector efficiency, operation performance, and control features. Optimum operating condition and its characteristics were closely investigated by changing the control condition based on the temperature difference which is the most important operating parameter. However, it is expected that, in high-insolation areas where large-scale ground storage is adaptable, solar system demonstrated in the research could be economically competitive and promisingly disseminate over various application areas.

Structural Characteristics of Turbulent Diffusion Flame Combusted with Simulated Coal Syngas

  • Park, Byung-Chul;Kim, Hyung-Taek;Chun, Won-Gee
    • Journal of Energy Engineering
    • /
    • v.11 no.4
    • /
    • pp.350-358
    • /
    • 2002
  • The present work determined the flame structure characteristics of coal syngas combusted inside swirl burners with various nozzle types. Fuel nozzle types are largely classified into two groups of axial and tangential. Experiments were carried out for investigating the effects of fuel nozzle geometry, fuel composition ratio, heating rate, excess air, and degree of swirl on the turbulent diffusion flame structure. To determine the characteristics of the flame structure, axial type fuel nozzle diameter of laboratory-scale combustor is varied to 1.23, 1.96, and 2.95 ㎜ and the direction of tangential type nozzles are varied to radial, clockwise, and counter-clockwise. The comparison of the experimental results was performed to understand functional parameters relating the flame structure. Data analysis showed that the vertical straight flame height generally decreased with increasing swirl number and decreasing axial type nozzle diameter. Flame height established with tangential type nozzle is 3 times shorter than that with vertical type. The flame structures among the 3 different tangential fuel nozzles relatively showed no particular difference. By increasing the heating rate, the width of flame increased generally in both vertical and tangential flame. Within the present experimental parameters of the investigation, flame structure is mainly depends on the nozzle type of the combustor. The visually investigated flame lengths are confirmed through the analysis of temperature profile of each flame.

A Study on the Alkali Hydrolysis of PET fabric with Ultrasonic Application(I) - Decomposition Rate Constant and Activation Energy - (초음파를 적용한 PET 직물의 알칼리 가수분해에 관한 연구(I) - 분해속도상수와 활성화 에너지-)

  • 서말용;조호현;김삼수;전재우;이승구
    • Textile Coloration and Finishing
    • /
    • v.14 no.4
    • /
    • pp.214-222
    • /
    • 2002
  • In order to give a silk-like touch to PET fabrics, the PET fabrics were treated with NaOH alkaline solution in various conditions. In alkaline treatment, the liquor flow type pilot weight reduction apparatus with magnetostrictive ultrasonic transducer was used for the study. The weight loss of PET fabrics hydrolyzed in 4% and 6% NaOH solution, at $95^\circ{C}$ and $99^\circ{C}$ for 60min. with ultrasonic application showed 3.7~4.6% higher than that of treated fabric without ultrasonic application. From the difference of specific weight loss, the treatment condition of the maximum of hydrolyzation effect appeared at $95^\circ{C}$ in $4^\circ{C}$ and at $90^\circ{C}$ in 6% NaOH solution, respectively. During the alkali hydrolysis of PET fabrics, the decomposition rate constant(k) increased exponentially with the treatment temperature and were not related with ultrasonic cavitation. The activation energy$(E_a)$ in decomposition of PET fabrics were 21.06kcal/mol with ultrasonic application and 21.10kcal/mol without ultrasonic application. The ultrasonic application gave a little higher value of the activation entropy$(\Delta{S}^\neq)$ and a little lower value of Gibbs free energy$(\Delta{S}^\neq)$ compared with not used ultrasonic apparatus.

The Study to Find Causes for Measuring Differences of Hydrogen Fillings in Hydrogen Refueling Station (수소충전소의 연료 계량 방법에 따른 계량 오차가 발생하는 원인 고찰)

  • LEE, TAECK HONG;KANG, BYOUNG WOO;LEE, EUN WOUNG;CHUNG, JIN BAE;HONG, SUK JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.32-40
    • /
    • 2018
  • There has been an measuring errors between state of charge (SOC; kg) value and mass flow meter (MFM) value in dispenser for hydrogen refueling station. Finally, we observed average 15.5% weight difference between these two values and the MFM readings show a 15.5% higher readout of the SOC readings. Each car was charged with average 2.66 kg of hydrogen fuel during this period. In the initial charging of the day shows less measuring value than the final charging with the maximum 0.038 kg times number of filling. There is no effects of atmosphere temperature change for the hydrogen filled weight during one full year such as January's cold winters and August's hot summers.