Excitation Processes of the CH4 Aurorae of Jupiter and Saturn

  • Published : 2018.05.08

Abstract

Recently, an analysis of 3-micron spectra of CH4 line emission from our Gemini/GNIRS observations of Jupiter's polar regions yielded an unexpected result: The homopause (~1 microbar pressure level) located directly above the long-lasting 8-micron CH4 north-polar hot spot (Great 8-micron Hot Spot: GHS) is cool compared with the temperatures of nearby auroral regions (Kim et al. 2017). Most of the 8-micron emission of the GHS originates from CH4 at the ~1 mbar level (i.e., deeper in the stratosphere, where cooling time is several years), much longer than at the altitude of the homopause. We propose a mechanism to explain the temperature difference: locally-fixed and transient, but energetic auroral particles, which can penetrate to the 1 mbar level and deposit energy there creating and maintaining the GHS. For Saturn, thus far we have not detected distinctive 8-micron nor 3-micron CH4 hot spots in the polar regions. We will present a possible implication for this difference between Jupiter and Saturn.

Keywords