• 제목/요약/키워드: Temperature Decreasing

검색결과 2,024건 처리시간 0.026초

극초고압 충돌분무시 충돌면의 온도거동에 관한 연구 (A Study on the Temperature Behavior of Impinging Plate in Impinging Spray with Ultra High pressure)

  • 정대용;김홍준;이종태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.442-447
    • /
    • 2003
  • The characteristics of instantaneous wall-surface temperature of impinging plate in case of ultra high pressure injection have been measured and analyzed by using thin film instantaneous temperature probe and ultra high pressure injection equipment. The decreasing rate of temperature was greater in case of higher temperature of impinging plate. Temperature drop was largest at center of piston and it was slight for others. Instantaneous temperature decreases rapidly with increasing injection pressure. But above 2,500bar of injection pressure, the decreasing rates are slightly affected by increasing injection pressure.

  • PDF

교반속도 및 등온교반온도에 따른 AZ91D 마그네슘합금 반응고 주조재의 미세조직 변화 (Microstructural Change in Rheocast AZ91D Magnesium Alloys with Stirring Rate and Isothermal Stirring Temperature)

  • 임창동;신광선
    • 한국주조공학회지
    • /
    • 제23권3호
    • /
    • pp.130-136
    • /
    • 2003
  • Rheocasting of AZ91D magnesium alloys yielded the microstructure consisted of the spherical primary particles in the matrix which is different from conventional casting. Rheocast ingots were produced under various processing conditions using batch type rheocaster. Morphology of primary particles was changed from rosette-shape to spherical shape with increasing stirring rate$(V_s)$ and decreasing isothermal stirring temperature$(T_s)$. With increasing $V_s$, more effective shearing between the particles occurred rather than the agglomeration and clustering, so the primary particle size decreased. But with decreasing $T_s$, primary particle size increased mainly due to sintering and partially Ostwald ripening. The sphericity of primary particles increased with increasing $V_s$ and decreasing $T_s$ due to enhanced abrasion among the primary particles. The uniformity of primary particle size increased with increasing Vs and $T_s$.

니켈쌀파메이트 전주층의 물성과 미세구조 (Study on the Mechanical Properties and Microstructure of Nickel Sulfamate Electroform)

  • 김인곤
    • 한국표면공학회지
    • /
    • 제37권1호
    • /
    • pp.40-48
    • /
    • 2004
  • Hardness and internal stress are very important in nickel electroforming. Nickel sulfamate bath has been widely used in electroforming because of its low internal stress and moderate hardness. Nickel sulfamate bath without chloride was chosen to investigated the effect of plating variable such as temperature, PH, current density and sodium naphthalene trisulfonate as addition agent on the hardness and internal stress. It was found that hardness increased with increasing temperature and decreasing current density and ranged from 150∼310 DPH. The hardness was highest at $55^{\circ}C$ and 10∼40 mA/$\textrm{cm}^2$. The internal stress increased with increasing current density and decreasing temperature. It was minimum at PH 3.0∼3.8. Low internal stress within $\pm$1,500 psi was obtained at both $50^{\circ}C$ and $55^{\circ}C$ in 10-20 mA/$\textrm{cm}^2$. The addition of sodium naphthalene trisulfonate was found to be effective in refine columnar grains thus resulted in decreasing internal stress, increasing hardness and improving brightness.

생강(生薑) 추출물의 위장관 기능개선 및 체온저하 억제효과에 대한 실험적 연구 (Effect on Promoting Gastrointestinal Function and Inhibiting of Decreasing Body Temperature of Ginger Extracts(Zingiber Officinale))

  • 김남석;정일국;이창현
    • 동의생리병리학회지
    • /
    • 제24권6호
    • /
    • pp.996-1003
    • /
    • 2010
  • This study was performed to investigate the effect of promoting gastrointestinal function and inhibiting of decreasing body temperature of ginger extract(Zingiber officinale) in rats. In order to elucidate the gastrointestinal function and inhibiting effect of body temperature of native ginger and improved ginger, water extracts of ginger were orally administrated into rats. The results are as follows: The gastrointestinal transit time was significantly decreased in native ginger(7.66hrs) and improved ginger(7.72hrs) extract administrated groups compare to control group(8.44hrs). The mean red faecal weight was increased in native ginger(30.6%) and improved ginger(31.1%) extract administrated groups compare to control group(24.9%) for 24hrs. Inhibiting effect of decreasing body temperature induced by serotonin was increased in native ginger($1.116^{\circ}C$) and improved ginger($1.416^{\circ}C$) extract administrated groups compare to positive control group($0.384^{\circ}C$) during 40 minutes. Gastrin and CGRP immunoreactive density was more strongly expressed in native ginger and improved ginger extract administrated groups compare to control group. Serotonin immunoreactive density was more weakly expressed in native ginger and improved ginger extract administrated groups compare to control group. These results suggest that ginger extracts may enhance physiological activity such as gastrointestinal motility, protection of mucosa and gastric acid secretion in gastrointestinal tracts, and inhibits decreasing body temperature

ZnO세라믹스의 소결온도가 전기적 특성에 미치는 영향 (The effect of sintering temperature on the electrical properties of ZnO ceramics)

  • 김용혁;이덕출
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제8권1호
    • /
    • pp.40-47
    • /
    • 1995
  • Electrical properties of ZnO ceramics based on Bi oxide was investigated in relation to sintering temperature. In the temperature range >$1150^{\circ}C$ to >$1350^{\circ}C$ the grain size increased from 9.mu.m to 20.mu.m when the sintering temperature was raised. The leakage current in the low voltage range increased as the potential barrier decreases, which is caused by increasing the grain size at high temperature. The dielectric characteristics of the ZnO ceramics was also affected by sintering temperature. Large dielectric constant was attributed, to the grainboundary layer of polycrystalline ZnO ceramics and decreasing grainboundary width. The variation of breakdown voltage with sintering temperature was attributed to the change of the donor concentration in the ZnO grain and grain size. The results showed that breakdown voltage increased decreasing grain size and donor concentration. Nonohmic coefficient was associated with the lower breakdown voltage per grainboundary layer due to the grain growth and higher donor concentration.

  • PDF

Benzamidoxime에 의한 중금속의 추출특성 (Characteristics of Heavy Metal Extraction by Benzamidoxime)

  • 이상훈;윤영삼
    • 한국환경과학회지
    • /
    • 제8권3호
    • /
    • pp.371-377
    • /
    • 1999
  • The effects of benzamidoxime concentration, solvents and temperature on the degree of metal extraction were investigated to apply benzamidoxime to heavy metal extraction as chelating agent. Benzamidoxime was synthesized from benzonitrile with hydroxylamine. The chemical structure of benzamidoxime was identified. The degree of heavy metal extraction was increased with increasing the concentration of benzamidoxime and decreasing the extraction temperature. Benzamidoxime was found to be an concentration of benzamidoxime and decreasing the extraction temperature. Benzamidoxime was found to be an effective extractant for Cu-extraction by benzene or chloroform. The relationship between the thermodynamic overall equilibrium constant and absolute temperature was expressed as log K = -5.56 + $855T^{-1}$. Heat of extraction, $$\Delta$H^0$ were calculated from overall equilibrium constants at various temperature and the extraction reactionby benzamidoxime was found to be exthothermic.

  • PDF

고온에서 HAN 계열 추진제 액적의 거동에 대한 연구 (Investigation on Behavior of HAN-based Propellant Droplet at High Temperature)

  • 황창환;백승욱;한조영;김수겸;전형열
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.329-332
    • /
    • 2012
  • The droplet behavior of 83.9 wt.% HAN water solution was investigated experimentally with various ambient temperature and nitrogen environment. At the initial stage of evaporation under thermal decomposition temperature of HAN, gradual decreasing of droplet diameter was observed. After that, the droplet started to expand due to the internal pressure build up by water nucleation inside the droplet. The micro explosion was observed at higher temperature than the decomposition temperature of HAN and the remaining droplet showed similar behavior of single composition droplet. The decreasing rate was augmented as the ambient temperature increasing.

  • PDF

메탄올 혼합 연료의 기화율 변화에 따른 연소특성에 관한 실험적 연구 (A Study on the Combustion Characteristics according to Evaporation rate of Methanol - Blended Fuel)

  • 조행묵
    • 한국분무공학회지
    • /
    • 제2권2호
    • /
    • pp.24-34
    • /
    • 1997
  • This paper describes the investigation of combustion characteristics of gasoline-methanol blend in constant volume combustion chamber. A constant volume combustion chamber was used to elucidate a basic combustion characteristics and the premixer was installed to control temperature and equivalence ratio. And the maximum pressure, combustion duration and flame propagation according to the evaporation rate were measured to determine the optimal temperature range for evaporating a blend fuel. These experimental results indicate that the combustion characteristics such as combustion chamber pressure and combustion were deteriorated by decreasing surrounding temperature of fuel. These experimental results indicate that the combustion characteristics such as combustion chamber pressure and combustion were deter orated by decreasing surrounding temperature of fuel injected. It was also found that the overall gasification process for methanol blend fuel was influenced by a combustion chamber temperature rather than a premixer temperature.

  • PDF

공냉형 암모니아/물 GAX 흡수식 냉동 사이클의 수치 해석 (A Numerical Simulation of Air-Cooled Ammonia/Water GAX Absorption Cooling Cycle)

  • 정시영
    • 설비공학논문집
    • /
    • 제7권3호
    • /
    • pp.488-500
    • /
    • 1995
  • An air-cooled ammonia/water GAX(Generator-Absorber heat eXchange) absorption cooling cycle is proposed and its performance is numerically evaluated. It is shown that the performance of the system is greatly dependent on the quality of the refrigerant leaving the evaporator. For any refrigerant concentration in the investigated range(99.1~99.9% ammonia), the cycle COP(coefficient of performance) reaches the highest value, when some amount(about 7%) of refrigerant evaporates in the refrigerant heat exchanger. Among temperature differences in various heat exchangers, the temperature difference between GAX-absorber and the GAX-generator shows the greatest effect on the system performance, whereas pressure losses cause no significant decrease in COP. The system COP increases almost linearly with increasing evaporator temperature, decreasing absorber temperature or decreasing condenser temperature. If both absorber and condenser temperature increase simultaneously, the decrease in the COP becomes larger.

  • PDF

Low-velocity impact performance of the carbon/epoxy plates exposed to the cyclic temperature

  • Fathollah Taheri-Behrooz;Mahdi Torabi
    • Steel and Composite Structures
    • /
    • 제48권3호
    • /
    • pp.305-320
    • /
    • 2023
  • The mechanical properties of polymeric composites are degraded under elevated temperatures due to the effect of temperature on the mechanical behavior of the resin and resin fiber interfaces. In this study, the effect of temperature on the impact response of the carbon fiber reinforced plastics (CFRP) was investigated at low-velocity impact (LVI) using a drop-weight impact tester machine. All the composite plates were fabricated using a vacuum infusion process with a stacking sequence of [45/0_2/-45/90_2]s, and a thickness of 2.9 mm. A group of the specimens was exposed to an environment with a temperature cycling at the range of -30 ℃ to 65 ℃. In addition, three other groups of the specimens were aged at ambient (28 ℃), -30 ℃, and 65 ℃ for ten days. Then all the conditioned specimens were subjected to LVI at three energy levels of 10, 15, and 20 J. To assess the behavior of the damaged composite plates, the force-time, force-displacement, and energy-time diagrams were analyzed at all temperatures. Finally, radiography, optical microscopy, and scanning electron microscopy (SEM) were used to evaluate the effect of the temperature and damages at various impact levels. Based on the results, different energy levels have a similar effect on the LVI behavior of the samples at various temperatures. Delamination, matrix cracking, and fiber failure were the main damage modes. Compared to the samples tested at room temperature, the reduction of temperature to -30 ℃ enhanced the maximum impact force and flexural stiffness while decreasing the absorbed energy and the failure surface area. The temperature increasing to 65 ℃ increased the maximum impact force and flexural stiffness while decreasing the absorbed energy and the failure surface area. Applying 200 thermal cycles at the range of -30 ℃ to 65 ℃ led to the formation of fine cracks in the matrix while decreasing the absorbed energy. The maximum contact force is recorded under cyclic temperature as 5.95, 6.51 and 7.14 kN, under impact energy of 10, 15 and 20 J, respectively. As well as, the minimum contact force belongs to the room temperature condition and is reported as 3.93, 4.94 and 5.71 kN, under impact energy of 10, 15 and 20 J, respectively.