A Numerical Simulation of Air-Cooled Ammonia/Water GAX Absorption Cooling Cycle

공냉형 암모니아/물 GAX 흡수식 냉동 사이클의 수치 해석

  • Published : 1995.08.01

Abstract

An air-cooled ammonia/water GAX(Generator-Absorber heat eXchange) absorption cooling cycle is proposed and its performance is numerically evaluated. It is shown that the performance of the system is greatly dependent on the quality of the refrigerant leaving the evaporator. For any refrigerant concentration in the investigated range(99.1~99.9% ammonia), the cycle COP(coefficient of performance) reaches the highest value, when some amount(about 7%) of refrigerant evaporates in the refrigerant heat exchanger. Among temperature differences in various heat exchangers, the temperature difference between GAX-absorber and the GAX-generator shows the greatest effect on the system performance, whereas pressure losses cause no significant decrease in COP. The system COP increases almost linearly with increasing evaporator temperature, decreasing absorber temperature or decreasing condenser temperature. If both absorber and condenser temperature increase simultaneously, the decrease in the COP becomes larger.

Keywords