Effect on Promoting Gastrointestinal Function and Inhibiting of Decreasing Body Temperature of Ginger Extracts(Zingiber Officinale)

생강(生薑) 추출물의 위장관 기능개선 및 체온저하 억제효과에 대한 실험적 연구

  • Kim, Nam-Seok (Department of Anatomy, College of Oriental Medicine, Woosuk University) ;
  • Jeong, Il-Kook (Department of Anatomy, College of Oriental Medicine, Woosuk University) ;
  • Lee, Chang-Hyun (Department of Anatomy, College of Oriental Medicine, Woosuk University)
  • 김남석 (우석대학교 한의과대학 해부학교실) ;
  • 정일국 (우석대학교 한의과대학 해부학교실) ;
  • 이창현 (우석대학교 한의과대학 해부학교실)
  • Received : 2010.10.01
  • Accepted : 2010.11.30
  • Published : 2010.12.25

Abstract

This study was performed to investigate the effect of promoting gastrointestinal function and inhibiting of decreasing body temperature of ginger extract(Zingiber officinale) in rats. In order to elucidate the gastrointestinal function and inhibiting effect of body temperature of native ginger and improved ginger, water extracts of ginger were orally administrated into rats. The results are as follows: The gastrointestinal transit time was significantly decreased in native ginger(7.66hrs) and improved ginger(7.72hrs) extract administrated groups compare to control group(8.44hrs). The mean red faecal weight was increased in native ginger(30.6%) and improved ginger(31.1%) extract administrated groups compare to control group(24.9%) for 24hrs. Inhibiting effect of decreasing body temperature induced by serotonin was increased in native ginger($1.116^{\circ}C$) and improved ginger($1.416^{\circ}C$) extract administrated groups compare to positive control group($0.384^{\circ}C$) during 40 minutes. Gastrin and CGRP immunoreactive density was more strongly expressed in native ginger and improved ginger extract administrated groups compare to control group. Serotonin immunoreactive density was more weakly expressed in native ginger and improved ginger extract administrated groups compare to control group. These results suggest that ginger extracts may enhance physiological activity such as gastrointestinal motility, protection of mucosa and gastric acid secretion in gastrointestinal tracts, and inhibits decreasing body temperature

Keywords

References

  1. Lee, Y.N. Flora of Korea, Seoul, Kyohaksa, pp 1107-1109, 1996.
  2. Lee, C.B. Illustrated Flora of Korea, Seoul, Hyangmoon Publisf Co., pp 231-231, 1979.
  3. 중약대사전(中藥大辭典), 鼎談, 第5卷, pp 2194-2201, 1999.
  4. 이춘령, 김우정. 향신료와 식용색소, pp 35-37, 1987.
  5. 한덕용. 생약학, 한국학습교재사, pp 90-93, 1983.
  6. Connell, D.W., Sutherland, M.D. A re-examination of gingerol, shogaol, and zingerone the pungent principle of ginger(Zingiber officinale Roscoe). Aust J Chem 22: 1033-1043, 1969. https://doi.org/10.1071/CH9691033
  7. Connell, D.W. The chemistry of the essential oil and oleoresin of ginger (Zingiber officinale Roscoe). Flavour Ind 1: 677-693, 1970.
  8. Chung, Y.K. Components of essential oil and antimicrobial of ginger. J Kor Soc Appl Biol Chem 40: 524-518, 1997.
  9. Surh, Y.J. Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat Res 428: 305-327, 1999. https://doi.org/10.1016/S1383-5742(99)00057-5
  10. Azian, M.N., Hasnah, M.S., Sazalina, M.S., Haira M.R. Ginger oleoresin from Zingiber officinale Roscoe effect of sample preparation yilled and quality. Paper at the congress of Sci. and Technol. Assoc. of malaysia. 7-11, 2001.
  11. Lee, B.S., Ko, M.S., Kim, H.J., Kim, D.H. Seperation of 6-gingerol from ginger and antioxidative activity. Kor J Biotechnol Bioeng 21: 484-488, 2006.
  12. Kang, J.H., Ahn, B.W., Lee, D.H., Byun, H.S., Kim, S.B., Park, T.H. Inhibitory effects of ginger and garlic extracts on the DNA damage. Korean J Food Sci Technol 20(3):287-292, 1988.
  13. Katiyar, S.K. Inhibition of tumor promotion in sencar mouse skin by Zingiber officinale Rhizoma. Planta Medica 56: 1023-1030, 1996.
  14. Cooksley, V.G. Aromatherapy. Englewood Cliffs, pp 349-350, 1996.
  15. Shin, J.H., Lee, S.J., Sung, N.J. Effects of Zingiber mioga, Zingiber mioga root and Zingiber officinale on lipid concentation in hyperlipidemic rats. J Korean Soc Food Sci Nutr 31(4):679-684, 2002. https://doi.org/10.3746/jkfn.2002.31.4.679
  16. Kim E.J., Ahn M.S. Antioxidative effect of ginger extracts. Korean J Soc Food Sci 9(1):37-42, 1993.
  17. 이봉수, 고명석, 김현종, 곽인섭, 김동호, 정봉우. 생강으로부터 6-Gingerol의 분리 및 항산화 활성. 한국생물공학회지 21(6):484-488, 2006.
  18. Ji, W.D., Jeong H.C., Lee, S.J., Chun, T.G. Antimicrobial activity and distilled components of garlic and ginger. J Agric Chem Biotechnol 40: 514-518, 1997.
  19. 박성혜, 백승화, 한종현. 생강이 혈압과 뇌혈류량에 미치는 영향 및 이를 이용한 건강음료의 개발. 한국식생활문화학회지 19(2):150-157, 2004.
  20. Murata, P., Kas, Y., Ishige A., Sasaki, H., Kurosawa, S., Nakamura, T. The herbal medicine Dai-kenchu-to and one of its active components [6]-shogaol increase intestinal blood flow in rats. Life Science 70(4):2061-2070, 2002. https://doi.org/10.1016/S0024-3205(01)01552-1
  21. Verma, S.K., Singh, M., Jain, P., Bordia, A. Protective effect of ginger, Zingiber officinale Rose on experimental atherosclerosis in rabbits. Indian J Exp Biol 42(7):726-738, 2004.
  22. 陶弘景集, 尙志鈞輯校. 名醫別綠(輯校本). 北京, 人民衛生出版社, pp 158-159, 1986.
  23. 康秉秀, 高雲彩, 金先熙외 12인. 本草學. 訂正4版, 서울, 영림사, pp 136-137, 1998.
  24. 신민교. 임상본초학. 서울, 영림사, pp 254-256, 1986.
  25. Mcmanus, J.A., Mowry, R.W. Staining methods. New York : Hoeber Med. Div., Harper & Row, p 63, 137, 1960.
  26. Hsu, S.M., Raine, L., Fanger, H. Use of avidin-biotinperoxidase complex (ABC) in immmunoperoxidase techniques: A comparison between ABC and unlabeled antibody(PAP) procedures. J Histochem Cytochem 29(4):77-580, 1981.
  27. 임정현, 김희선, 최은주, 심창구, 박효진. 지실추출물이 기니픽 위장관 운동에 미치는 영향 : in vitro, in vivo 연구. 대한소화관운동학회지 14(1):7-17, 2008.
  28. Kim, D.Y., Camilleri, M. Serotonin: a mediator of the brain-gut connection. Am J Gastroenterol 95(10):2698-2700, 2000.
  29. Houghton, L.A., Rogers, J., Whorwell, P.J., Campbell, F.C., Williams, N.S., Goka, J. Zamifenacin (UK-76, 654) a potent gut M3 selective muscarinic antagonist, reduces colonic motor activity in patients with irritable bowel syndrome. Aliment Pharmacol Ther 11(3):561-568, 1997. https://doi.org/10.1046/j.1365-2036.1997.00189.x
  30. 박승미, 이혜정, 신형철, 김혜정, 임사비나. 滎穴刺鍼이 發熱 흰쥐의 체온하강과 중추성 면역에 미치는 영향. 대한한의학회지 22(2):109-119, 2001.
  31. Heim, H.K., Oestmann, A., Sewing, K.F. Effects of histamine on protein and glycoprotein production of isolated pig gastric mucosal cells. Pharmacology 40: 265-270, 1990. https://doi.org/10.1159/000138671
  32. Scheiman, J.M., Kraus, E.R., Boland, C.R. Regulation of canine gastric mucin synthesis and phospholipid secretion by acid secretagogues. Gastroenterology 102: 1842-1850, 1992.
  33. Ichikawa, T., Ishiharam K., Saigenjim K., Hotta, K. Stimulation of mucus glycoprotein biosynthesis in rat gastric mucosa. Comp Biochem Pharmacol 46:1551-1557, 1993. https://doi.org/10.1016/0006-2952(93)90322-N
  34. Spee-Brand, R., Strous, G.J.A.M., Kramer, M.F. Isolation and partial characterization of rat gastric mucus glycoprotein. Biochim Biophys Acta 621: 104-116, 1980. https://doi.org/10.1016/0005-2795(80)90066-5
  35. Ohara, S., Ishihara, K., Hotta, K. Two types of rat gastric mucus glycoprotein subunits. J Biohem.(Tokyo) 103: 1050-1053, 1988. https://doi.org/10.1093/oxfordjournals.jbchem.a122378
  36. Bansil, R., Stanley, E., Tsukahara, M., La Mont, J.F. Mucin biophysics. Annu Rev Physiol 57: 635-657, 1995. https://doi.org/10.1146/annurev.ph.57.030195.003223
  37. Suganuma, T., Katsuyama, T., Tsukahara, M., Tatematsu, M., Sakakura, Y., Murata, F. Comparative histochemical study of alimentary tracts with special reference to the mucous neck cells of the stomach. Am J Anat 161: 219-238, 1981. https://doi.org/10.1002/aja.1001610206
  38. Ishihara, K., Hotta, K. Comparison of the mucus glycoproteins present in the different layers of rat gastric mucosa. Comp Biochem Physiol. A Physiol 104B: 315-319, 1993.
  39. Chuang, C.N., Tanner, M., Chen, M.C.Y., Davidson, S., Soll, A.H. Gastrin induction of histamine release from primary cultures of canine oxyntic mucosal cells. Am J Physiol 263: G460-G465, 1992.
  40. Sandvik, A.K., Waldum, H.L. CCK-B(gastrin)receptor regulates gastric histamine release and acid secretion. Am J Physiol 260: G925-928, 1991.
  41. Mardh, S., Song, Y.H., Carlsson, C., Bjorkman, T. Mechanism of stimulation of acid production in parietal cells isolated from the pig gastric mucosa. Acta Physiol Scand 131: 589-598, 1987. https://doi.org/10.1111/j.1748-1716.1987.tb08280.x
  42. Sewing, K.F.R., Beinborn, M. Prostaglandin(PG) E2 receptors on porcine chief cells. Dig Dis Sci 33: 909, 1988.
  43. Yoshimura, K., Kraus, E.R., Shimakura, S., Scheiman, J.M., Boland, C.R. Role of prostaglandine E2 in cholinergic mediated glycoprotein synthesis in canine antrum. Dig Dis Sci 37: 1045-1050, 1992. https://doi.org/10.1007/BF01300285
  44. Wagner, C., Clayton, M.K., Gallegos, J., Bass, P., Oaks, J.A. Intraduodenal serotonin elicits non-propagating spike potentials in the small intestine of the rat. Comp biochem Physiol A Mol Integr Physiol 136(3):591-603, 2003. https://doi.org/10.1016/S1095-6433(03)00212-5
  45. Li, Y., Wu, X.Y., Zhu, J.X., Owyang, C. Intestinal serotonin acts as paracrine substance to mediate pancreatic secretion stimulated by luminal factors. Am J Physiol Liver Physiol 281(4):G916-923, 2001.
  46. Tuo, B.G., Sellers, Z., Paulus, P., Barrett, K.E., Isenberg, J.I. 5-HT induces duodenal mucosal bicarbonate secretion via cAMP- and Ca2+- dependent signaling pathways and 5-HT4 receptors in mice. Am J Physiol Liver Physiol 286(3):G444-451, 2003.
  47. Fukumoto, S., Tatewaki, M., Yamada, T., Fujimiya, M., Mantyh, C., Voss, M., Eubanks, S., Harris, M., Pappas, T.N., Takahashi, T. Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. Am J Physiol regul Integr Comp Physiol 284(5):R1269-1276, 2003. https://doi.org/10.1152/ajpregu.00442.2002
  48. Barada, K.A., Saadé, N.E., Atweh, S.F., Khoury, C.I., Nassar, C.F. Calcitonin gene-related peptide regulates amino acid absorption across rat jejunum. Regul Pept 90(1-3):39-45, 2000. https://doi.org/10.1016/S0167-0115(00)00103-8