• Title/Summary/Keyword: Temperature Control of Fuel

Search Result 470, Processing Time 0.027 seconds

Fuel Injection Control of Vehicles Using Fuzzy Control Technique (퍼지 제어 기법을 이용한 차량의 연료 제어)

  • Kim, Kwang-Baek;Woo, Young-Woon;Ha, Sang-An
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.1013-1018
    • /
    • 2007
  • In general, there are many sensors for fuel injection control such as an air flow sensor, an air intake temperature sensor, a cooling water temperature sensor, a throttle position sensor, and a motor position sensor. In this paper, we proposed a method for controlling the amount of fuel consumption in cars using fuzzy control technique by temperature change of an air intake temperature sensor and air-fuel ratio, the ratio of air and fuel mixture. In the proposed method, the amount of fuel injection is controlled by fuzzy membership functions and fuzzy inference rules established for air-fuel ratio, air intake temperature, and final fuel compensation, after computing air-fuel values using each amount of air intake and each amount of fuel injection. We verified that the proposed method is more efficient than conventional methods in fuel injection control from the results of the simulation program.

Performance Increase for a 2 kW Open Cathode Type Fuel Cell Using Temperature/Humidity Control (2 kW급 개방 캐소드형 연료전지 출력 향상을 위한 온습도 제어)

  • YUAN, WEIWEI;CHOI, MIHWA;YANG, SEUGRAN;KIM, YOUNG-BAE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.369-376
    • /
    • 2017
  • Temperature and humidity regulations of an open-cathode PEM fuel cell with balance of plant (BOP) are developed in this study. The axial fan, a bubble humidifier, set of solenoid valves and a controller are used to perform temperature and humidity control simultaneously. A fuzzy controller is designed, and it shows its superiority in real-time controlling for strong non-linear dynamical fuel cell system. The axial fan speed is used for temperature control and solenoid valve on/off signal of the bubble humidifier is used for humidity control. The axial fan speed is controlled to keep the fuel cell temperature within the desired point. Meanwhile, the bubble humidifier is utilized to moisture hydrogen to manage the water content of membrane. The results show that the proposed fuzzy controller effectively increases the output power of 10% for a PEM fuel cell.

Immune Based 2-DOF PID Controller Design for Complex Process Control

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.70.2-70
    • /
    • 2002
  • In the thermal power plant, it is difficult to maintain strict control of the steam temperature in order to avoid thermal stress, because of variation of the heating value according to the fuel source, the time delay of changes in main steam temperature versus changes in fuel flow rate, difficulty of control on the main steam temperature control and the reheater steam temperature control system owing to the dynamic response characteristics of changes in steam temperature and the reheater steam temperature, fluctuation of inner fluid water and steam flow rates widely during load-following operation. Up to the present time, the PID controller has been used to operate this system...

  • PDF

Injector Control Logic for a Liquid Phase LPG Injection Engine (액상 LPG 분사 엔진의 인젝터 제어 로직)

  • 조성우;민경덕
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.15-21
    • /
    • 2003
  • The liquid phase LPG injection engine is a new technology to make good use of LPG as a clean energy. However, it is difficult to precisely control air/fuel ratio in the system because of variation of fuel composition, change of temperature and flash boiling injection mechanism. This study newly suggests an injector control logic for liquid phase LPG injection systems. This logic compensates a number of effects such as variations of density, stoichiometric air/fuel ratio, injection delay time, injection pressure, release pressure which is formed by flash boiling of fuel at nozzle exit. This logic can precisely control air/fuel ratio with only two parameters of intake air flow rate and injection pressure without considering fuel composition, fuel temperature.

The development of a fuel lifecycle reactivity control strategy for a generic micro high temperature reactor

  • Seddon Atkinson;Takeshi Aoki
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.785-792
    • /
    • 2024
  • This article provides an overview of the design methodology used to develop a conceptual set of reactivity control mechanism of a micro reactor based on the U-Battery. The U-Battery is based on remote deployment and therefore it is favourable to provide a long fuel lifecycle. This is achieved by implementing a high fissile loading content, which proves challenging when considering reactivity control methods. This article follows the design methodology used to overcome these issues, with an emphasis on a new concept of a moveable moderator which utilises the size of the U-Battery as a small reduction in moderation provides a significant reduction in reactivity. The latest work on this project sees the moveable moderator investigated during a depressurised loss of forced coolant accident, where a reduction of moderator volume increases the maximum fuel temperature experienced. The overall conclusion is that the maximum fuel temperature is not significantly increased (4 K) due to the central reflector region relatively lower volumetric heat capacity compared to that of whole core. However, a small temperature increase is observed immediately after the transient due to the central reflector removal because it reaches energy equilibrium with the fuel region faster.

Temperature control for once through boiler (관류형 보일러의 온도제어)

  • 김은기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.900-904
    • /
    • 1991
  • It is important and difficult to control the steam temperature in the once through boiler. Generally, steam temperature of once through boiler not only is controlled by boiler spray water flow, but also is influenced by feed water flow and fuel flow. So we have to make the same gain of fuel flow controller and feed water flow controller. This paper is shown the design and test of steam temperature and feed water flow control system for once through boiler in pusan thermal power plant.

  • PDF

Effect of Temperature and Humidity on the Performance Factors of a 15-W Proton Exchange Membrane Fuel Cell

  • Dien Minh Vu;Binh Hoa Pham;Duc Pham Xuan;Dung Nguyen Dinh;Vinh Nguyen Duy
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.241-246
    • /
    • 2023
  • Fuel cells are one of the renewable energy sources that have sparked a lot of scientific attention for solving problems related to the energy crisis and environmental pollution. One of the most crucial subjects concerning the utilization of fuel cells is modeling. Therefore, an analytical steady-state and dynamic fuel cell model was described in this study. The parameter for the identification process was investigated, and the MATLAB/Simulink implementation was demonstrated. A 15-W proton exchange membrane fuel cell was used to apply the suggested modeling methodology. Comparing experimental and simulation findings indicated that the model error was constrained to 3%. This study showed that temperature and humidity affect fuel cell performance.

Intelligent 2-DOF PID Control For Thermal Power Plant Using Immune Based Multiobjective

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1371-1376
    • /
    • 2003
  • In the thermal power plant, the main steam temperature is typically regulated by the fuel flow rate and the spray flow rate, and the reheater steam temperature is regulated by the gas recirculation flow rate. However, Strictly maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature, the change of the dynamic characteristics in the reheater. Up to the present time, PID Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. This paper focuses on tuning of the 2-DOF PID Controller on the DCS for steam temperature control using immune based multiobjective approach. The stable range of a 2-DOF parameter for only this system could be found for the start-up procedure and this parameter could be used for the tuning problem. Therefore tuning technique of multiobjective based on immune network algorithms in this paper can be used effectively in tuning 2-DOF PID controllers.

  • PDF

A Study on Reliability Improvement of BLDC Motor for Combat Vehicle in High Temperature Environment (고온 환경에서의 전투차량용 BLDC 모터 신뢰성 향상에 관한 연구)

  • Yoon, Hyo-Jin;Nam, Yoon-Wook;Park, Kyoung-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.97-102
    • /
    • 2018
  • Combat vehicles require high levels of maneuverability, firepower, armor, and operability. A high-performance power system is required for optimal maneuverability. The fuel pump which supplies fuel stably is very important to achieve this. The fuel pump consists of a pump part, a motor part, and a control part. It is equipped with a BLDC motor. Numerous failures of the fuel pump occurred during vehicle operation when exposed to vibration, shock, and high temperature. The cause of failure was confirmed to be stator slip of the BLDC motor. Stator slip is a consequence of the interference loss between the stator and the housing of the motor part in an high temperature environment. The failure of the fuel pump was solved through size control of the motor housing and the stator. We performed vibration testing at high temperature for verification. This study contributes to improving the reliability of combat vehicles.

A Study on the Combustion Characteristics according to Evaporation rate of Methanol - Blended Fuel (메탄올 혼합 연료의 기화율 변화에 따른 연소특성에 관한 실험적 연구)

  • Cho, H.M.
    • Journal of ILASS-Korea
    • /
    • v.2 no.2
    • /
    • pp.24-34
    • /
    • 1997
  • This paper describes the investigation of combustion characteristics of gasoline-methanol blend in constant volume combustion chamber. A constant volume combustion chamber was used to elucidate a basic combustion characteristics and the premixer was installed to control temperature and equivalence ratio. And the maximum pressure, combustion duration and flame propagation according to the evaporation rate were measured to determine the optimal temperature range for evaporating a blend fuel. These experimental results indicate that the combustion characteristics such as combustion chamber pressure and combustion were deteriorated by decreasing surrounding temperature of fuel. These experimental results indicate that the combustion characteristics such as combustion chamber pressure and combustion were deter orated by decreasing surrounding temperature of fuel injected. It was also found that the overall gasification process for methanol blend fuel was influenced by a combustion chamber temperature rather than a premixer temperature.

  • PDF