• Title/Summary/Keyword: Technology-Based Effluent Limitations

Search Result 13, Processing Time 0.069 seconds

Assessment of Technology Based Industrial Wastewater Effluent Limitation and Standards for the Domestic Industry Category (III) : The Evaluation of TBEL's Applicability for Domestic Industry Categories (Case-study : Pulp, Paper, Paperboard Category) (처리기술에 근거한 산업폐수 배출허용기준 국내 적용성 연구(III) : 국내 적용방안 및 사례 연구 (펄프·종이 및 종이제품 제조시설))

  • Kim, Kyeongjin;Son, Daehee;Heo, Jin;Kim, Kwangin;Kim, Sanghun;Kim, Jaehun;Yeom, Icktae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.377-386
    • /
    • 2010
  • Introduction of TBELs into Korean environmental regulatory system for wastewater may require very careful considerations and appropriate modifications of the TBELs applied in US. The Korean regulations for wastewater are based on uniform regulatory criteria for wastewater effluent discharge and are quite different from the individual permit system in US. In addition, the toxic pollutants regulated in Korea are much less than those in US. Therefore, the effects of TBELs application on the pollutants reduction and the economic feasibility should be carefully assessed for different categories of wastewater sources. In this study, the applicability of TBELs for the industrial categories of Korea was discussed. The TBELs were derived for a sample category, the pulp paper paperboard manufacture, based on the previously reported analytical data from 52 facilities of the domestic pulp paper paperboard manufacture in Korea. It was suggested that the BAT effluent limitations were BOD 30 mg/L, $COD_{Mn}$ 40 mg/L, SS 40 mg/L, T-N 30 mg/L and T-P 4 mg/L and that the allowable effluent loads were $0.31{\sim}1.75kgCOD_{Mn}/ton$-products. Due to the limitation of insufficient data, there were difficult to obtain the important factors to derive more systematic and accurate limitation standards for the pollutants such as the 'Long Term Average (LTA)', the 'Product Normalized Discharge Flow (PNDF)', and the 'Variability Factor (VF)'. However, as the first trial of TBELs determination based on the all available analytical data reported, the procedure and the outcome of the study may provide valuable insight on application of TBELs in Korea.

New methodologies to derive discharge limits considering operational flexibility of radioactive effluents from Korean nuclear power plants based on historical discharge data

  • Kang, Ji Su;Cheong, Jae Hak
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1003-1015
    • /
    • 2022
  • The new methodologies to derive discharge limits considering operational flexibility according to international safety standards were developed to help reduce the environmental releases of radioactive effluents from nuclear power plants (NPPs). To overcome the limitations of the two existing methods to set up discharge limits assuming a specific statistical distribution of the effluent discharge, two modified equations were newly proposed to directly derive a particular discharge limits corresponding to the target 'compliance probability' based on the actual annual discharge data for a specific NPP and radionuclide groups. By applying these to the actual yearly discharge data of 14 Korean NPPs for 7 radionuclide groups for the past 20 years, the applicability of two new methodologies to actual cases was demonstrated. The 'characteristic value' with approximately a 90% compliance probability for each Korean NPP and radionuclide group was proposed based on the results. The new approaches for setting up the discharge limits and the characteristic values developed in this study are expected to be effectively utilized to foster operator's efforts to progressively reduce the environmental releases of radioactive effluents of NPPs relative to the previous discharge data considering operational flexibilities.

Recent advances in the characterization and the treatment methods of effluent organic matter

  • Ray, Schindra Kumar;Truong, Hai Bang;Arshad, Zeshan;Shin, Hyun Sang;Hur, Jin
    • Membrane and Water Treatment
    • /
    • v.11 no.4
    • /
    • pp.257-274
    • /
    • 2020
  • There are many previous review articles are available to summarize either the characterization methods of effluent organic matter (EfOM) or the individual control treatment options. However, there has been no attempt made to compare in parallel the physicochemical treatment options that target the removal of EfOM from biological treatments. This review deals with the recent progress on the characterization of EfOM and the novel technologies developed for EfOM treatment. Based on the publications after 2010, the advantages and the limitations of several popularly used analytical tools are discussed for EfOM characterization, which include UV-visible and fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), size exclusion chromatography (SEC), and Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS). It is a recent trend to combine an SEC system with various types of detectors, because it can successfully track the chemical/functional composition of EfOM, which varies across a continuum of different molecular sizes. FT-ICR-MS is the most powerful tool to detect EfOM at molecular levels. However, it is noted that this method has rarely been utilized to understand the changes of EfOM in pre-treatment or post-treatment systems. Although membrane filtration is still the preferred method to treat EfOM before its discharge due to its high separation selectivity, the minimum requirements for additional chemicals, the ease of scaling up, and the continuous operation, recent advances in ion exchange and advanced oxidation processes are greatly noteworthy. Recent progress in the non-membrane technologies, which are based on novel materials, are expected to enhance the removal efficiency of EfOM and even make it feasible to selectively remove undesirable fractions/compounds from bulk EfOM.