Browse > Article
http://dx.doi.org/10.12989/mwt.2020.11.4.257

Recent advances in the characterization and the treatment methods of effluent organic matter  

Ray, Schindra Kumar (Department of Environment and Energy, Sejong University)
Truong, Hai Bang (Department of Environment and Energy, Sejong University)
Arshad, Zeshan (Department of Environment and Energy, Sejong University)
Shin, Hyun Sang (Department of Environmental Engineering, Seoul National University of Science and Technology)
Hur, Jin (Department of Environment and Energy, Sejong University)
Publication Information
Membrane and Water Treatment / v.11, no.4, 2020 , pp. 257-274 More about this Journal
Abstract
There are many previous review articles are available to summarize either the characterization methods of effluent organic matter (EfOM) or the individual control treatment options. However, there has been no attempt made to compare in parallel the physicochemical treatment options that target the removal of EfOM from biological treatments. This review deals with the recent progress on the characterization of EfOM and the novel technologies developed for EfOM treatment. Based on the publications after 2010, the advantages and the limitations of several popularly used analytical tools are discussed for EfOM characterization, which include UV-visible and fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), size exclusion chromatography (SEC), and Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS). It is a recent trend to combine an SEC system with various types of detectors, because it can successfully track the chemical/functional composition of EfOM, which varies across a continuum of different molecular sizes. FT-ICR-MS is the most powerful tool to detect EfOM at molecular levels. However, it is noted that this method has rarely been utilized to understand the changes of EfOM in pre-treatment or post-treatment systems. Although membrane filtration is still the preferred method to treat EfOM before its discharge due to its high separation selectivity, the minimum requirements for additional chemicals, the ease of scaling up, and the continuous operation, recent advances in ion exchange and advanced oxidation processes are greatly noteworthy. Recent progress in the non-membrane technologies, which are based on novel materials, are expected to enhance the removal efficiency of EfOM and even make it feasible to selectively remove undesirable fractions/compounds from bulk EfOM.
Keywords
organic matter; wastewater; oxidation; membrane; removal;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ly, Q.V., Nghiem, L.D., Cho, J., Maqbool, T., Hur, J. (2019), "Organic carbon source-dependent properties of soluble microbial products in sequencing batch reactors and its effects on membrane fouling", J. Environ. Manage. 244, 40-47. https://doi.org/https://doi.org/10.1016/j.jenvman.2019.05.045.   DOI
2 Ly, Q.V., Nghiem, L.D., Sibag, M., Maqbool, T., Hur, J. (2018), "Effects of COD/N ratio on soluble microbial products in effluent from sequencing batch reactors and subsequent membrane fouling", Water Res. 134, 13-21. https://doi.org/https://doi.org/10.1016/j.watres.2018.01.024.   DOI
3 Ma, D., Gao, Y., Gao, B., Wang, Y., Yue, Q., Li, Q. (2014), "Impacts of powdered activated carbon addition on trihalomethane formation reactivity of dissolved organic matter in membrane bioreactor effluent", Chemosphere 117, 338-344. https://doi.org/https://doi.org/10.1016/j.chemosphere.2014.07.070.   DOI
4 Manickavachagam, M., Sillanpaa, M., Swaminathan, M., Ahmmad, B. (2015), "Advanced Oxidation Processes for Wastewater Treatment", Int. J. Photoenergy. https://doi.org/10.1155/2015/363167.
5 Guzman, J., Mosteo, R., Sarasa, J., Alba, J.A., Ovelleiro, J.L. (2016), "Evaluation of solar photo-Fenton and ozone based processes as citrus wastewater pre-treatments", Sep. Purif. Technol., 164, 155-162. https://doi.org/10.1016/j.seppur.2016.03.025.   DOI
6 Hawkes, J. A., Patriarca, C., Sjoberg, P. J., Tranvik, L. J., & Bergquist, J. (2018), "Extreme isomeric complexity of dissolved organic matter found across aquatic environments", Limnol. Oceanogr. Lett, 3(2), 21-30.https://doi.org/10.1002/lol2.10064.   DOI
7 Hawkes, J.A., Sjoberg, P.J.R., Bergquist, J., Tranvik, L.J. (2019), "Complexity of dissolved organic matter in the molecular size dimension: insights from coupled size exclusion chromatography electrospray ionisation mass spectrometry", Faraday Discuss. 218, 52-71. https://doi.org/10.1039/c8fd00222c.   DOI
8 Her, N., Amy, G., Sohn, J., Von Gunten, U. (2008), "UV absorbance ratio index with size exclusion chromatography (URI-SEC) as an NOM property indicator", J. Water Supply Res. Technol., 57, 289. https://doi.org/10.2166/aqua.2008.0001.   DOI
9 Hodges, B.C., Cates, E.L., Kim, J.H. (2018), "Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials", Nat. Nanotechnol. 13, 642-650. https://doi.org/10.1038/s41565-018-0216-x.   DOI
10 Hofman-Caris, C.H.M., Siegers, W.G., van de Merlen, K., de Man, A.W.A., Hofman, J.A.M.H. (2017), "Removal of pharmaceuticals from WWTP effluent: Removal of EfOM followed by advanced oxidation.", Chem. Eng. J. 327, 514-521. https://doi.org/10.1016/j.cej.2017.06.154.   DOI
11 Holman, SR. and Ohlinger, K.N., (2007), "An evaluation of fouling potential and methods to control fouling in microfiltration for secondary wastewater effluent", Water Environ. Federation, 6417-6444. https://www.owp.csus.edu/research/wastewater/papers/Membrane-Fouling-Holman-Ohlinger-WEFTEC07.pdf https://doi.org/https://doi.org/10.1016/j.jclepro.2016.05.068.
12 Agbaba, J., Jazic, J.M., Tubic, A., Watson, M., Maletic, S., Isakovski, Marijana Kragulj Dalmacija, B., (2016), "Oxidation of natural organic matter with processes involving v, $H_2O_2$ and UV light: formation of oxidation and disinfection by-products". RSC Adv., 6, 86212-86219. https://doi.org/10.1039/c6ra18072h.   DOI
13 Maqbool, T., Bae, S., Hur, J. (2018), "Exploring the complex removal behavior of natural organic matter upon N-doped reduced graphene oxide-activated persulfate via excitation-emission matrix combined with parallel factor analysis and size exclusion chromatography", Chem. Eng. J. 347, 252-262. https://doi.org/10.1016/j.cej.2018.04.121.   DOI
14 Maqbool, T., Cho, J., Hur, J. (2017), "Dynamic changes of dissolved organic matter in membrane bioreactors at different organic loading rates: Evidence from spectroscopic and chromatographic methods", Bioresour. Technol. 234, 131-139. https://doi.org/https://doi.org/10.1016/j.biortech.2017.03.035.   DOI
15 Maqbool, T., Cho, J., Hur, J. (2018), "Changes in spectroscopic signatures in soluble microbial products of activated sludge under different osmotic stress conditions", Bioresour. Technol. 255, 29-38. https://doi.org/https://doi.org/10.1016/j.biortech.2018.01.113.   DOI
16 Ahmad, R.T., Nguyen T.V., Shim, W.G., Vigneswaran, S. Moon, H., Kandasamy J. (2012), "Effluent organic matter removal by Purolite(R)A500PS: Experimental performance and mathematical model", Sep. Purif. Technol. 98, 46-54. https://doi.org/10.1016/j.seppur.2012.06.025.   DOI
17 Sun, F., Wang, X., Li, X. (2011), "Change in the fouling propensity of sludge in membrane bioreactors (MBR) in relation to the accumulation of biopolymer clusters", Bioresour. Technol. 102, 4718-4725. https://doi.org/10.1016/j.biortech.2011.01.048.   DOI
18 Shon, H.K., Vigneswaran, S., Kim, I.S., Cho, J., Ngo, H.H., (2004), The effect of pretreatment to ultrafiltration of biologically treated sewage effluent: A detailed effluent organic matter (EfOM) characterization", Water Res. 38, 1933-1939. https://doi.org/10.1016/j.watres.2004.01.015.   DOI
19 Shon, H.K., Vigneswaran, S., Snyder, S.A. (2006), "Effluent Organic Matter (EfOM) in Wastewater: Constituents, Effects, and Treatment. Crit. Re", Environ. Sci. Technol. 36, 327-374. https://doi.org/10.1080/10643380600580011.   DOI
20 Sun J., X. Li, Y. Quan, Y. Yin, S. Zheng (2015), "Effect of long-term organic removal on ion exchange properties and performance during sewage tertiary treatment by conventional anion exchange resins", Chemosphere, 136, 181-189. https://doi.org/10.1016/j.chemosphere.2015.05.002.   DOI
21 Sun, W., Yue, D., Song, J., Nie, Y. (2018), "Adsorption removal of refractory organic matter in bio-treated municipal solid waste landfill leachate by anion exchange resins", Waste Management, 81, 61-70. https://doi.org/10.1016/j.wasman.2018.10.005.   DOI
22 Sun, Y., Chen, Z., Wu, G., Wu, Q., Zhang, F., Niu, Z., Hu, H.-Y. (2016), "Characteristics of water quality of municipal wastewater treatment plants in China: implications for resources utilization and management", J. Clean. Prod. 131, 1-9.   DOI
23 T.V. Nguyen, R. Zhang, S. Vigneswaran, H.H. Ngo, J. Kandasamy, P. Mathes (2011), "Removal of organic matter from effluents by Magnetic Ion Exchange (MIEX(R))", Desalination, 276, 96-102. https://doi.org/10.1016/j.desal.2011.03.028.   DOI
24 Baker, R.W., 2006. Membrane technology and applications, 2nd ed. John Wiley and Sons, Ltd, United Kingdom.
25 Ahmed, M.B., Johir, M.A.H., Khourshed, C., Zhou, J.L., Ngo, H.H., Nghiem, D.L., Moni, M., Sun, L., 2018. Sorptive removal of dissolved organic matter in biologically-treated effluent by functionalized biochar and carbon nanotubes: Importance of sorbent functionality. Bioresour. Technol. 269, 9-17 https://doi.org/10.1016/j.biortech.2018.08.046.   DOI
26 Al Bsoul, M. Hailat, A. Abdelhay, M. Tawalbeh, I. Jum'h, K. Bani-Melhem (2019), "Treatment of olive mill effluent by adsorption on titanium oxide nanoparticles", Sci. Total Environ., 688, 1327-1334. https://doi.org/10.1016/j.scitotenv.2019.06.381.   DOI
27 Asaithambi, P., Sajjadi, B., Aziz, A.R.A. (2017), "Integrated ozone-photo-Fenton process for the removal of pollutant from industrial wastewater", Chinese J. Chem. Eng., 25, 516-522. https://doi.org/10.1016/j.cjche.2016.10.005.   DOI
28 Qu, J., Fan, M. (2010), "The Current State of Water Quality and Technology Development for Water Pollution Control in China. Crit. Rev", Environ. Sci. Technol. 40, 519-560. https://doi.org/10.1080/10643380802451953.   DOI
29 Razaviarani, V., Zazo, J.A., Casas, J.A., Jaffe, P.R. (2019), "Coupled fenton-denitrification process for the removal of organic matter and total nitrogen from coke plant wastewater", Chemosphere 224, 653-657. https://doi.org/10.1016/j.chemosphere.2019.02.178.   DOI
30 Richardson, S.D., (2003), "Disinfection by-products and other emerging contaminants in drinking water", Trend Anal. Chem., 22, 666-684. https://doi.org/10.1016/S0165-9936(03)01003-3.   DOI
31 Rosenberger, S., Laabs, C., Lesjean, B., Gnirss, R., Amy, G., Jekel, M., Schrotter, J.-C. (2006), "Impact of colloidal and soluble organic material on membrane performance in membrane bioreactors for municipal wastewater treatment", Water Res. 40(4), 710-720. https://doi.org/10.1016/j.watres.2005.11.028.   DOI
32 Barker, D.J., Salvi, S.M., Langenhoff, A.A., Stuckey, D.C. (2000), "Soluble microbial products in ABR treating low-strength wastewater", J. Environ. Eng., 126, 239-249. https://doi.org/10.1061/(ASCE)0733-9372(2000)126:3(239).   DOI
33 Huang, H., Chow, C.W.K., Jin, B., (2016), "Characterisation of dissolved organic matter in stormwater using high-performance size exclusion chromatography". J. Environ. Sci. (China) 42, 236-245. https://doi.org/10.1016/j.jes.2015.07.003.   DOI
34 Seibert, D., Henrique Borba, F., Bueno, F., Inticher, J.J., Modenes, A.N., Espinoza-Quinones, F.R., Bergamasco, R. (2019), "Two-stage integrated system photo-electro-Fenton and biological oxidation process assessment of sanitary landfill leachate treatment: An intermediate products study", Chem. Eng. J. 372, 471-482. https://doi.org/10.1016/j.cej.2019.04.162.   DOI
35 Shanmuganathan, S., Nguyen, T.V., Shim, W.G., Kandasamy, J., Listowski, A., Vigneswaran S. (2014), "Effluent organic matter removal from reverse osmosis feed by granular activated carbon and purolite A502PS fluidized beds", J. Ind. Eng. Chem., 20, 4499-4508. https://doi.org/10.1016/j.jiec.2014.02.022.   DOI
36 Shon, H.K., Vigneswaran, S., Kandasamy, J. and Cho, J. (2011), "Membrane technology for organic removal in wastewater", Water and Wastewater Treatment Technologies, UNESCO-ELOSS.
37 Barhoumi, S. Ncib, A. Chibani, K. Brahmi, W. Bouguerra, E. Elaloui (2019), "High-rate humic acid removal from cellulose and paper industry wastewater by combining electrocoagulation process with adsorption onto granular activated carbon", Ind. Crop Prod., 140, 111715. https://doi.org/10.1016/j.indcrop.2019.111715.   DOI
38 Barker, D.J., Stuckey, D.C. (1999), "A review of soluble microbial products (SMP) in wastewater treatment systems", Water Res., 33, 3063-3082. 10.1016/S0043-1354(99)00022-6.   DOI
39 Bassandeh, M., Antony, A., Le-Clech, P., Richardson, D., Leslie G. (2013), "Evaluation of ion exchange resins for the removal of dissolved organic matter from biologically treated paper mill effluent", Chemosphere, 90, 1461-1469. https://doi.org/10.1016/j.chemosphere.2012.09.007.   DOI
40 Huber, S.A., Balz, A., Abert, M., Pronk, W. (2011), "Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography - organic carbon detection - organic nitrogen detection (LC-OCD-OND", Water Res. 45, 879-885. https://doi.org/10.1016/j.watres.2010.09.023.   DOI
41 Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salanki, T., van der Ploeg, M., Besseling, E., Koelmans, Geissen, A.A. (2016), "Microplastics in the Terrestrial Ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae)", Environ. Sci. Technol. 50, 2685-2691. https://doi.org/10.1021/acs.est.5b05478.   DOI
42 Huo, S., Xi, B., Yu, H., He, L., Fan, S., Liu, H. (2008), "Characteristics of dissolved organic matter (DOM) in leachate with different landfill ages", J. Environ. Sci. 20, 492-498. https://doi.org/10.1016/S1001-0742(08)62085-9.   DOI
43 Hur, J., Lee, D.H., Shin, H.S., (2009), "Comparison of the structural, spectroscopic and phenanthrene binding characteristics of humic acids from soils and lake sediments", Org. Geochem. 40, 1091-1099. https://doi.org/10.1016/j.orggeochem.2009.07.003.   DOI
44 Iboukhoulef, H., Douani, R., Amrane, A., Chaouchi, A., Elias, A. (2019), "Heterogeneous Fenton like degradation of olive Mill wastewater using ozone in the presence of BiFeO3 photocatalyst", J. Photochem. Photobiol. A Chem. 383, 112012. https://doi.org/10.1016/j.jphotochem.2019.112012.   DOI
45 Ignatev, T. Tuhkanen (2019), "Monitoring WWTP performance using size-exclusion chromatography with simultaneous UV and fluorescence detection to track recalcitrant wastewater fractions", Chemosphere, 214, 587-597. https://doi.org/10.1016/j.chemosphere.2018.09.099.   DOI
46 Nguyen, T.V., Zhang, R., Vigneswaran, S., Ngo, H.H., Kandasamy, J., Mathes, P. (2011), "Removal of organic matter from effluents by Magnetic Ion Exchange (MIEX(R))", Desalination 276, 96- 102. https://doi.org/10.1016/j.desal.2011.03.028.   DOI
47 Bsoul, A., Hailat, M., Abdelhay, A., Tawalbeh, M., Jum'h, I., Bani-Melhem K. (2019), "Treatment of olive mill effluent by adsorption on titanium oxide nanoparticles", Sci. Total Environ., 688, 1327-1334. https://doi.org/10.1016/j.scitotenv.2019.06.381.   DOI
48 Bhatnagar, A., Sillanpaa, M. (2017), "Removal of natural organic matter (NOM) and its constituents from water by adsorption - A review", Chemosphere, 166, 497-510. https://doi.org/10.1016/j.chemosphere.2016.09.098.   DOI
49 Bhatnagar, M. Sillanpaa (2017), "Removal of natural organic matter (NOM) and its constituents from water by adsorption - A review", Chemosphere, 166, 497-510. https://doi.org/10.1016/j.chemosphere.2016.09.098.   DOI
50 Bodhipaksha, L.C., Sharpless, C.M., Chin, Y.P., MacKay, A.A., (2017), "Role of effluent organic matter in the photochemical degradation of compounds of wastewater origin", Water Res., 110, 170-179. https://doi.org/10.1016/j.watres.2016.12.016.   DOI
51 Yu, H., Qu, F., Zhang, X., Shao, S., Rong, H., Liang, H., Bai, L., Ma, J. (2019), "Development of correlation spectroscopy (COS)method for analyzing fluorescence excitation emission matrix (EEM): A case study of effluent organic matter (EfOM)ozonation", Chemosphere 228, 35-43. https://doi.org/10.1016/j.chemosphere.2019.04.119.   DOI
52 Zhang, R., Vigneswaran, S., Ngo, H.H., Nguyen, H. (2006), "Magnetic ion exchange (MIEX(R)) resin as a pre-treatment to a submerged membrane system in the treatment of biologically treated wastewater", Desalination 192, 296-302. https://doi.org/10.1016/j.desal.2005.07.040.   DOI
53 Zhang, X., Yang, C.W., Li, J., Yuan, L., Sheng, G.P. (2019), "Spectroscopic insights into photochemical transformation of effluent organic matter from biological wastewater treatment plants", Sci. Total Environ. 649, 1260-1268. https://doi.org/10.1016/j.scitotenv.2018.08.378.   DOI
54 Peuravuori, J., Pihlaja, K. (1997), "Isolation and characterization of natural organic matter from lake water: Comparison of isolation with solid adsorption and tangential membrane filtration", Environ. Int. 23, 441-451. https://doi.org/10.1016/S0160-4120(97)00049-4.   DOI
55 Oliveira Marcionilio, S.M.L., Crisafulli, R., Medeiros, G.A., de Sousa Tonha, M., Garnier, J., Neto, B.A.D., Linares, J.J. (2019), "Influence of hydrodynamic conditions on the degradation of 1-butyl-3-methylimidazolium chloride solutions on boron-doped diamond anodes", Chemosphere 224, 343-350. https://doi.org/10.1016/j.chemosphere.2019.02.128.   DOI
56 Pan, Z., Song, C., Li, L., Wang, H., Pan, Y., Wang, C., Li, J., Wang, T., Feng, X.. (2019), Membrane technology coupled with electrochemical advanced oxidation processes for organic wastewater treatment: Recent advances and future prospects", Chem. Eng. J. 376, 120909. https://doi.org/10.1016/j.cej.2019.01.188.   DOI
57 Pernet-Coudrier, B., Clouzot, L., Varrault, G., Tusseau-Vuillemin, M.-H., Verger, A., Mouchel, J.-M., (2008), "Dissolved organic matter from treated effluent of a major wastewater treatment plant: characterization and influence on copper toxicity", Chemosphere, 73, 593-599. https://doi.org/10.1016/j.chemosphere.2008.05.064.   DOI
58 Phong, D.D., Hur, J. (2016), "Non-catalytic and catalytic degradation of effluent dissolved organic matter under UVA-and UVC-irradiation tracked by advanced spectroscopic tools", Water Res. 105, 199-208. https://doi.org/10.1016/j.watres.2016.08.068.   DOI
59 Poblete, R., Perez, N. (2020), "Use of sawdust as pretreatment of photo-Fenton process in the depuration of landfill leachate", J. Environ. Manage. 253. https://doi.org/10.1016/j.jenvman.2019.109697.
60 Zhang, Y., An, Y., Liu, C., Wang, Y., Song, Z., Li, Y., Meng, W., Qi, F., Xu, B., Croue, J.-P., Yuan, D. and Ikhlaq, A., (2019), "Catalytic ozonation of emerging pollutant and reduction of toxic by-products in secondary effluent matrix and effluent organic matter reaction activity", Water Res. 166, 115026. https://doi.org/10.1016/j.watres.2019.115026.   DOI
61 Zhao, Y., Song, L., Ong, S.L. (2010) "Fouling of RO membranes by effluent organic matter (EfOM): Relating major components of EfOM to their characteristic fouling behaviors", J. Memb. Sci. 349, 75-82. https://doi.org/10.1016/j.memsci.2009.11.024.   DOI
62 Zhou, Z., Liu, X., Sun, K., Lin, C., Ma, J., He, M., Ouyang, W. (2019), "Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: A review", Chem. Eng. J. 372, 836-851. https://doi.org/10.1016/j.cej.2019.04.213   DOI
63 Zietzschmann, F., Mitchell, R.L., Jekel, M., (2015), "Impacts of ozonation on the competition between organic micro-pollutants and effluent organic matter in powdered activated carbon adsorption", Water Res. 84, 153-160. https://doi.org/10.1016/j.watres.2015.07.031.   DOI
64 Carstea, E.M., Bridgeman, J., Baker, A., Reynolds D.M. (2016), "Fluorescence spectroscopy for wastewater monitoring: A review", Water Res., 95, 205-219. https://doi.org/10.1016/j.watres.2016.03.021.   DOI
65 Cawley, K.M., Butler, K.D., Aiken, G.R., Larsen, L.G., Huntington, T.G., McKnight, D.M. (2012), "Identifying fluorescent pulp mill effluent in the Gulf of Maine and its watershed", Mar. Pollut. Bull., 64, 1678-1687. https://doi.org/10.1016/j.marpolbul.2012.05.040.   DOI
66 Chen, W., Luo, Y., Ran, G., Li, Q. (2019), "An investigation of refractory organics in membrane bioreactor effluent following the treatment of landfill leachate by the $O_3/H_2O_2$ and MW/PS processes", Waste Manag., 97, 1-9. https://doi.org/10.1016/j.wasman.2019.07.016.   DOI
67 Chin, Y.P., Alken, G., O'Loughlin, E. (1994), "Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances", Environ. Sci. Technol., 28, 1853-1858. https://doi.org/10.1021/es00060a015.   DOI
68 Chen, Y., Xu, W., Zhu, H., Wei, D., Wang, N., Li, M. (2018), "Comparison of organic matter removals in single-component and bi-component systems using enhanced coagulation and magnetic ion exchange (MIEX) adsorption", Chemosphere, 210, 672-682. https://doi.org/10.1016/j.chemosphere.2018.07.055.   DOI
69 Chen, Z., Li, M., Wen, Q., Ren, N. (2017), "Evolution of molecular weight and fluorescence of effluent organic matter (EfOM) during oxidation processes revealed by advanced spectrographic and chromatographic tools", Water Res., 124, 566- 575. https://doi.org/https://doi.org/10.1016/j.watres.2017.08.006.   DOI
70 Chen, Z., Tang, Y., Wen, Q., Yang, B., Pan, Y. (2019), "Effect of pH on effluent organic matter removal in hybrid process of magnetic ion-exchange resin adsorption and ozonation", Chemosphere 241, 125090. https://doi.org/10.1016/j.chemosphere.2019.125090.
71 Maqbool, T., Cho, J., Hur, J. (2019), "Importance of nutrient availability for soluble microbial products formation during a famine period of activated sludge: Evidence from multiple analyses", J. Environ. Sci. 84, 112-121. https://doi.org/https://doi.org/10.1016/j.jes.2019.04.021.   DOI
72 Martinez-Huitle, C.A., Panizza, M. (2018), "Electrochemical oxidation of organic pollutants for wastewater treatment. Curr. Opin. Electrochem. 11, 62-71. https://doi.org/10.1016/j.coelec.2018.07.010.   DOI
73 Mathews, J.A., Tan, H. (2016) "Circular economy: Lessons from China", Nature 531, 440-442. https://doi.org/10.1038/531440a   DOI
74 Matilainen, A., Sillanpaa, M. (2010), "Removal of natural organic matter from drinking water by advanced oxidation processes", Chemosphere 80, 351-365. https://doi.org/10.1016/j.chemosphere.2010.04.067.   DOI
75 Jeong K., Lee, D.S., Kim, D.G., Ko, S.O. (2014), "Effects of ozonation and coagulation on effluent organic matter characteristics and ultrafiltration membrane fouling", J. Environ. Sci. (China) 26, 1325-1331. https://doi.org/10.1016/S1001-0742(13)60607-5.   DOI
76 Ignatev, Tuhkanen, T. (2019), "Monitoring WWTP performance using size-exclusion chromatography with simultaneous UV and fluorescence detection to track recalcitrant wastewater fractions", Chemosphere, 214, 587-597. https://doi.org/10.1016/j.chemosphere.2018.09.099.   DOI
77 Ittisupornrat, S., Phihusut, D., Kitkaew, D., Sangkarak, S., Phetrak, A. (2019), "Performance of dissolved organic matter removal from membrane bioreactor effluent by magnetic powdered activated carbon", J. Environ. Manage. 248, 109314. https://doi.org/https://doi.org/10.1016/j.jenvman.2019.109314.   DOI
78 Jeong K., D.G. Kim, S.O. Ko (2017), "Adsorption characteristics of Effluent Organic Matter and Natural Organic Matter by Carbon Based Nanomaterials", KSCE J. Civ. Eng., 21, 119-126. https://doi.org/10.1007/s12205-016-0421-9.   DOI
79 Jiang Z., Ye, Y., Zhang, X., Pan, B. (2019), "Validation of a combined Fe(III)/UV/NaOH process for efficient removal of carboxyl complexed Ni from synthetic and authentic effluents", Chemosphere 234, 917-924. https://doi.org/10.1016/j.chemosphere.2019.06.128.   DOI
80 Jin P., Jin, X., Bjerkelund, V.A., Osterhus, S.W., Wang, X.C., Yang, L., (2016), "A study on the reactivity characteristics of dissolved effluent organic matter (EfOM) from municipal wastewater treatment plant during ozonation", Water Res. 88, 643-652. https://doi.org/10.1016/j.watres.2015.10.060.   DOI
81 John R.H., Stubbins, A., Ritchie, J.D., Minor, E.C., Kieber, D.J., Mopper, K., (2009), "Erratum: Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter (Limnology and Oceanography 53 955-969)", Limnol. Oceanogr. 54, 1023. https://doi.org/10.4319/lo.2009.54.3.1023.   DOI
82 Chung, Y., Kim, H., Kim, T.-S., Kim, Y.M., Kang, S. (2019), "Mitigation of organic fouling on ceramic membranes by selective removal of microbial-oriented organic matters in wastewater effluents", Sep. Purif. Technol, 219, 216-221. https://doi.org/https://doi.org/10.1016/j.seppur.2019.03.032.   DOI
83 McAdams, B.C., Aiken, G.R., McKnight, D.M., Arnold, W.A., Chin, Y.P. (2018), "High Pressure Size Exclusion Chromatography (HPSEC) Determination of Dissolved Organic Matter Molecular Weight Revisited: Accounting for Changes in Stationary Phases, Analytical Standards, and Isolation Methods", Environ. Sci. Technol. 52, 722-730. https://doi.org/10.1021/acs.est.7b04401.   DOI
84 McNeill, K., Canonica, S. (2016), "Triplet state dissolved organic matter in aquatic photochemistry: Reaction mechanisms, substrate scope, and photophysical properties", Environ. Sci. Process. Impacts 18, 1381-1399. https://doi.org/10.1039/c6em00408c.   DOI
85 Meinelt, T., Paul, A., Phan, T.M., Zwirnmann, E., Kruger, A., Wienke, A., Steinberg, C.E.W. (2007), "Reduction in vegetative growth of the water mold Saprolegnia parasitica (Coker) by humic substance of different qualities", Aquat. Toxicol. 83, 93-103. https://doi.org/https://doi.org/10.1016/j.aquatox.2007.03.013.   DOI
86 Ciputra, S., Antony, A., Phillips, R., Richardson, D., Leslie, G., (2010), "Comparison of treatment options for removal of recalcitrant dissolved organic matter from paper mill effluent", Chemosphere, 81, 86-91. https://doi.org/10.1016/j.chemosphere.2010.06.060.   DOI
87 Couto, C.F., Lange, L.C., Amaral, M.C.S. (2019), "Occurrence, fate and removal of pharmaceutically active compounds (PhACs) in water and wastewater treatment plants-A review", J. Water Process Eng. 32, 100927. https://doi.org/https://doi.org/10.1016/j.jwpe.2019.100927.   DOI
88 Yang, L., Hur, J., Zhuang, W. (2015), "Occurrence and behaviors of fluorescence EEM-PARAFAC components in drinking water and wastewater treatment systems and their applications: a review", Environ. Sci. Pollut. R., 22, 6500-6510. https://doi.org/10.1007/s11356-015-4214-3.   DOI
89 Yan, C., Liu, H., Sheng, Y., Huang, X., Nie, M., Huang, Q., Baalousha, M., (2018), "Fluorescence characterization of fractionated dissolved organic matter in the five tributaries of Poyang Lake, China", Sci. Total Environ., 638, 1311-1320. https://doi.org/10.1016/j.scitotenv.2018.05.099.
90 Yan, M., Korshin, G., Wang, D., Cai, Z. (2012), "Characterization of dissolved organic matter using high-performance liquid chromatography (HPLC)-size exclusion chromatography (SEC) with a multiple wavelength absorbance detector", Chemosphere 87, 879-885. https://doi.org/10.1016/j.chemosphere.2012.01.029.   DOI
91 Yang, W., He, C., Wang, X., Zhang, Y., Cheng, Z. Dai, B., Zhang, L., (2017), "Dissolved organic matter (DOM) removal from bio-treated coking wastewater using a new polymeric adsorbent modified with dimethylamino groups", Bioresour. Technol. 241, 82-87. https://doi.org/10.1016/j.biortech.2017.05.106.   DOI
92 Yang, W., Wang, J., Hua, M., Zhang, Y., Shi, X., (2018), "Characterization of effluent organic matter from different coking wastewater treatment plants", Chemosphere 203, 68-75. https://doi.org/https://doi.org/10.1016/j.chemosphere.2018.03.167.   DOI
93 Yoo, J., Shim, T., Hur, J., Jung, J. (2016), "Role of polarity fractions of effluent organic matter in binding and toxicity of silver and copper", J. Hazard. Mater. 317, 344-351. https://doi.org/https://doi.org/10.1016/j.jhazmat.2016.06.009.   DOI
94 Derrien, M., Brogi, S.R., Goncalves-Araujo, R. (2019), "Characterization of aquatic organic matter: Assessment, perspectives and research priorities", Water Res, 163, 114908. https://doi.org/https://doi.org/10.1016/j.watres.2019.114908.   DOI
95 Cruz De la, N., Gimenez, J., Esplugas, S., Grandjean, D., De Alencastro, L.F., Pulgarin, C. (2012), "Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge", Water Res., 46, 1947-1957. https://doi.org/10.1016/j.watres.2012.01.014.   DOI
96 Cui, X., Choo, K.-H., (2014), "Natural Organic Matter Removal and Fouling Control in Low-Pressure Membrane Filtration for Water Treatment", Environ. Eng. Res., 19, 1-8. 10.4491/eer.2014.19.1.001.   DOI
97 Daud, W.M.A.W., Houshamnd, A.H. (2010), "Textural characteristics, surface chemistry and oxidation of activated carbon", J. Natural Gas Chem., 19, 267-279. https://doi.org/10.1016/S1003-9953(09)60066-9.   DOI
98 WANG, L., WU, F., ZHANG, R., LI, W., LIAO, H. (2009), "Characterization of dissolved organic matter fractions from Lake Hongfeng, Southwestern China Plateau", J. Environ. Sci. 21, 581-588. https://doi.org/10.1016/S1001-0742(08)62311-6.   DOI
99 Wang, X., Wang, J., Li, K., Zhang, H., Yang, M. (2018), "Molecular characterization of effluent organic matter in secondary effluent and reclaimed water: Comparison to natural organic matter in source water", J. Environ. Sci. 63, 140-146. https://doi.org/https://doi.org/10.1016/j.jes.2017.03.020.   DOI
100 Wei D., H.H. Ngo, W. Guo, W. Xu, Y. Zhang, B. Du, Q. Wei (2016), "Biosorption of effluent organic matter onto magnetic biochar composite: Behavior of fluorescent components and their binding properties", Bioresource Technology, 214, 259-265. https://doi.org/10.1016/j.biortech.2016.04.109.   DOI
101 Domingos, R. de Abreu Fonseca, F.V. (2018), "Evaluation of adsorbent and ion exchange resins for removal of organic matter from petroleum refinery wastewaters aiming to increase water reuse", J. Environ. Manage. 214, 362-369. https://doi.org/10.1016/j.jenvman.2018.03.022.   DOI
102 Yu, H., Qu, F., Sun, L., Liang, H., Han, Z., Chang, H., Shao, S., Li, G. (2015), "Relationship between soluble microbial products (SMP) and effluent organic matter (EfOM): Characterized by fluorescence excitation emission matrix coupled with parallel factor analysis", Chemosphere 121, 101-109. https://doi.org/https://doi.org/10.1016/j.chemosphere.2014.11.037.   DOI
103 Wei L., K. Wang, Q. Zhao, C. Xie, W. Qiu, T. Jia (2011), "Kinetics and equilibrium of adsorption of dissolved organic matter fractions from secondary effluent by fly ash", J. Environ. Sci., 23, 1057-1065. https://doi.org/10.1016/S1001-0742(10)60597-9.   DOI
104 Wei, D., Ngo, H.H., Guo, W., Xu, W., Du, B., Khan, M.S., Wei, Q., (2018), "Biosorption performance evaluation of heavy metal onto aerobic granular sludge-derived biochar in the presence of effluent organic matter via batch and fluorescence approaches", Bioresour. Technol. 249, 410-416. https://doi.org/https://doi.org/10.1016/j.biortech.2017.10.015.   DOI
105 Wen, S., Chen, L., Li, W., Ren, H., Li, K., Wu, B., Hu, H., Xu, K. (2018), "Insight into the characteristics, removal, and toxicity of effluent organic matter from a pharmaceutical wastewater treatment plant during catalytic ozonation", Sci. Rep. 8, 1-9. https://doi.org/10.1038/s41598-018-27921-0.   DOI
106 Westerhoff, P., Anning, D. (2000), "Concentrations and characteristics of organic carbon in surface water in Arizona: Influence of urbanization", J. Hydrol. 236, 202-222. https://doi.org/10.1016/S0022-1694(00)00292-4.   DOI
107 Dong, H., Qiang, Z., Richardson, S.D., (2019), "Formation of Iodinated Disinfection Byproducts (I-DBPs) in Drinking Water: Emerging Concerns and Current Issues", Acc. Chem. Res., 52, 896-905. 10.1021/acs.accounts.8b00641.   DOI
108 Dong, M.M., Mezyk, S.P., Rosario-Ortiz, F.L. (2010), "Reactivity of effluent organic matter (EfOM) with hydroxyl radical as a function of molecular weight", Environ. Sci. Technol., 44, 5714- 5720. https://doi.org/10.1021/es1004736.   DOI
109 Jung C., Deng, Y., Zhao, R., Torrens, K., (2017), "Chemical oxidation for mitigation of UV-quenching substances (UVQS) from municipal landfill leachate: Fenton process versus ozonation.", Water Res. 108, 260-270. https://doi.org/10.1016/j.watres.2016.11.005.   DOI
110 Johnson, B.R., Eldred, T.B., Nguyen, A.T., Payne, W.M., Schmidt, E.E., Alansari, A.Y., Amburgey, J.E., Poler, J.C., (2016), "High-Capacity and Rapid Removal of Refractory NOM Using Nanoscale Anion Exchange Resin", ACS Appl. Mater Interfaces., 8, 18540-18549. https://doi.org/10.1021/acsami.6b04368.   DOI
111 Kang, K.H., Shin, H.S., Park, H. (2002), "Characterization of humic substances present in landfill leachates with different landfill ages and its implications", Water Res. 36, 4023-4032. https://doi.org/10.1016/S0043-1354(02)00114-8.   DOI
112 Karelid, V., Larsson, G., Bjorlenius, B. (2017), "Pilot-scale removal of pharmaceuticals in municipal wastewater: Comparison of granular and powdered activated carbon treatment at three wastewater treatment plants", J. Environ. Manage. 193, 491-502. https://doi.org/10.1016/j.jenvman.2017.02.042.   DOI
113 Kawasaki, N., Matsushige, K., Komatsu, K., Kohzu, A., Nara, F.W., Ogishi, F., Yahata, M., Mikami, H., Goto, T., Imai, A. (2011), "Fast and precise method for HPLC-size exclusion chromatography with UV and TOC (NDIR) detection: Importance of multiple detectors to evaluate the characteristics of dissolved organic matter", Water Res. 45, 6240-6248. https://doi.org/10.1016/j.watres.2011.09.021.   DOI
114 Lee, Y., Von Gunten, U. (2016), "Advances in predicting organic contaminant abatement during ozonation of municipal wastewater effluent: Reaction kinetics, transformation products, and changes of biological effects", Environ. Sci. Water Res. Technol. 2, 421-442. https://doi.org/10.1039/c6ew00025h.   DOI
115 Laabs, C.N., Amy, G.L., Jekel, M. (2006), "Understanding the size and character of fouling-causing substances from effluent organic matter (EfOM) in low-pressure membrane filtration", Environ. Sci. Technol. 40, 4495-4499. https://doi.org/10.1021/es060070r.   DOI
116 Lamelas, C., Pinheiro, J.P., Slaveykova, V.I., (2009), "Effect of Humic Acid on Cd(II), Cu(II), and Pb(II) Uptake by Freshwater Algae: Kinetic and Cell Wall Speciation Considerations", Environ. Sci. Technol., 43, 730-735. 10.1021/es802557r.   DOI
117 Lamelas, C., Wilkinson, K.J., Slaveykova, V.I. (2005), "Influence of the Composition of Natural Organic Matter on Pb Bioavailability to Microalgae", Environ. Sci. Technol. 39, 6109- 6116. https://doi.org/10.1021/es050445t.   DOI
118 El Fels, L., Zamama, M., Hafidi, M. (2015), "Advantages and Limitations of Using FTIR Spectroscopy for Assessing the Maturity of Sewage Sludge and Olive Oil Waste Co-composts. Biodegrad. Bioremediation Polluted Syst.", New Adv. Technol. https://doi.org/10.5772/60943.
119 Drikas, M., Dixon, M., Morran, J. (2011), "Long term case study of MIEX pre-treatment in drinking water; understanding NOM removal", Water research, 45, 1539-1548. https://doi.org/10.1016/j.watres.2010.11.024.   DOI
120 E.M. Carstea, J. Bridgeman, A. Baker, D.M. Reynolds (2016), "Fluorescence spectroscopy for wastewater monitoring: A review", Water Res., 95, 205-219. https://doi.org/10.1016/j.watres.2016.03.021.   DOI
121 Esparza-Soto, M., Nunez-Hernandez, S., Fall, C., (2011), "Spectrometric characterization of effluent organic matter of a sequencing batch reactor operated at three sludge retention times", Water Res., 45, 6555-6563. https://doi.org/10.1016/j.watres.2011.09.057.   DOI
122 Evenblij H., Verrecht B.,Van der Graaf J.H.J.M., Van der Bruggen. B (2005), "Manipulating filterability of MBR activated sludge by pulsed substrate addition", Desalination,178, 193-201 10.1016/j.desal.2005.02.006.   DOI
123 Zietzschmann, F., Worch, E., Altmann, J., Ruhl, A.S., Sperlich, A., Meinel, F., Jekel, M., (2014), "Impact of EfOM size on competition in activated carbon adsorption of organic micro-pollutants from treated wastewater", Water Res. 65, 297-306. https://doi.org/10.1016/j.watres.2014.07.043.   DOI
124 Tian, J., Wu, C., Yu, H., Gao, S., Li, G., Cui, F., Qu, F. (2018), "Applying ultraviolet/persulfate (UV/PS) pre-oxidation for controlling ultrafiltration membrane fouling by natural organic matter (NOM) in surface water", Water Res. 132, 190- 199.https://doi.org/10.1016/j.watres.2018.01.005.   DOI
125 Khetan, S.K., Collins, T.J., (2007), "Human pharmaceuticals in the aquatic environment: A challenge to green chemisty", Chem. Rev., 107, 2319-2364. 10.1021/cr020441w.   DOI
126 Kim, H.-C., Dempsey, B.A. (2010), "Removal of organic acids from EfOM using anion exchange resins and consequent reduction of fouling in UF and MF", J. Membrane Sci., 364, 325-330. https://doi.org/10.1016/j.memsci.2010.08.032.   DOI
127 Tenorio, R., Fedders, A.C., Strathmann, T.J., Guest, J.S., (2017), "Impact of growth phases on photochemically produced reactive species in the extracellular matrix of algal cultivation systems", Environ. Sci. Water Res. Technol. 3, 1095-1108. https://doi.org/10.1039/c7ew00172j.   DOI
128 Trigueros, D.E.G., Modenes, A.N., de Souza, P.S.C., de Pauli, A.R., de Souza, A.R., Espinoza-Quinones, F.R., Borba, F.H. (2019), "Statistical optimization of the photo-Fenton operational parameters with in situ ferrioxalate induction in the treatment of textile effluent", J. Photochem. Photobiol. A Chem. 385, 112095. https://doi.org/10.1016/j.jphotochem.2019.112095.   DOI
129 Umar, M., Roddick, F.A., Fan, L., Autin, O., Jefferson, B. (2015), "Treatment of municipal wastewater reverse osmosis concentrate using UVC-LED/H2O2 with and without coagulation pre-treatment", Chem. Eng. J. 260, 649-656. https://doi.org/10.1016/j.cej.2014.09.028.   DOI
130 Waclawek, S., Lutze, H. V., Grubel, K., Padil, V.V.T., Cernik, M., Dionysiou, D.D. (2017), "Chemistry of persulfates in water and wastewater treatment: A review", Chem. Eng. J., 330, 44-62. https://doi.org/10.1016/j.cej.2017.07.132.   DOI
131 Li, L., Wang, Y., Zhang, W., Yu, S., Wang, X., Gao, N. (2020), "New advances in fluorescence excitation-emission matrix spectroscopy for the characterization of dissolved organic matter in drinking water treatment: A review", Chem. Eng. J. 381, 122676. https://doi.org/https://doi.org/10.1016/j.cej.2019.122676.   DOI
132 Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., Crowley, D. (2011), "Biochar effects on soil biota - A review", Soil Biol. Biochem, 43, 1812-1836. https://doi.org/10.1016/j.soilbio.2011.04.022.   DOI
133 Levchuk, I., Rueda Marquez, J.J., Sillanpaa, M. (2018), "Removal of natural organic matter (NOM) from water by ion exchange - A review", Chemosphere, 192, 90-104. https://doi.org/10.1016/j.chemosphere.2017.10.101.   DOI
134 Li L., Wang, Y., Zhang, W., Yu, S., Wang, X., Gao, N., (2020), "New advances in fluorescence excitation-emission matrix spectroscopy for the characterization of dissolved organic matter in drinking water treatment: A review", Chem. Eng. J., 381, 122676. https://doi.org/10.1016/j.cej.2019.122676.   DOI
135 F. Zietzschmann, R.L. Mitchell, M. Jekel (2015), "Impacts of ozonation on the competition between organic micro-pollutants and effluent organic matter in powdered activated carbon adsorption", Water Res., 84, 153-160. https://doi.org/10.1016/j.watres.2015.07.031.   DOI
136 Fan J., H. Li, C. Shuang, W. Li, A. Li (2014), "Dissolved organic matter removal using magnetic anion exchange resin treatment on biological effluent of textile dyeing wastewater", J. Environ Sci., 26, 1567-1574. https://doi.org/10.1016/j.jes.2014.05.024.   DOI
137 Wang, D., Cheng, L., Wang, M., Zhang, X., Xue, D., Zhuo, W., Zheng, L., Ding, A. (2018), "The performance of a sulfate-radical mediated advanced oxidation process in the degradation of organic matter from secondary effluents", Environ. Sci. Water Res. Technol., 4, 773-782. https://doi.org/10.1039/c7ew00346c.   DOI
138 Wang, J.L., Xu, L.J. (2012), "Advanced oxidation processes for wastewater treatment: Formation of hydroxyl radical and application", Crit. Rev. Environ. Sci. Technol., 42, 251-325. https://doi.org/10.1080/10643389.2010.507698.   DOI
139 Li, D., He, X.S., Xi, B.D., Wei, Z.M., Pan, H.W. and Cui, D.Y. (2014), "Study on UV-Visible spectra characteristic of dissolved organic matter during municipal solid waste composting", Adv. Mater. Res. 878, 840-849. https://doi.org/10.4028/www.scientific.net/AMR.878.840.   DOI
140 Li, K., Liu, Q., Fang, F., Luo, R., Lu, Q., Zhou, W., Huo, S., Cheng, P., Liu, J., Addy, M., Chen, P., Chen, D., Ruan, R.. (2019), "Microalgae-based wastewater treatment for nutrients recovery: A review", Bioresour. Technol. 291, 121934. https://doi.org/https://doi.org/10.1016/j.biortech.2019.121934.   DOI
141 Li, M., Chen, Z., Wang, Z., Wen, Q. (2019), "Investigation on degradation behavior of dissolved effluent organic matter, organic micro-pollutants and bio-toxicity reduction from secondary effluent treated by ozonation", Chemosphere 217, 223-231. https://doi.org/10.1016/j.chemosphere.2018.11.039.   DOI
142 Fraia, S. Di, Massarotti, N., Vanoli, L., (2018), "A novel energy assessment of urban wastewater treatment plants", Energy Convers. Manag, 163, 304-313. https://doi.org/https://doi.org/10.1016/j.enconman.2018.02.058.   DOI
143 Fan, L., Nguyen, T., Roddick, F.A., Harris, J.L., (2008), "Low-pressure membrane filtration of secondary effluent in water reuse: Pre-treatment for fouling reduction", J. Memb. Sci., 320, 135-142. https://doi.org/10.1016/j.memsci.2008.03.058.   DOI
144 Fettig J. (1999), "Removal of humic substances by adsorption/ion exchange", Water Sci. Technol., 40, 173. https://doi.org/10.1016/S0273-1223(99)00654-X.   DOI
145 Fialho, L.L., da Silva, W.T.L., Milori, D.M.B.P., Simoes, M.L., Martin-Neto, L. (2010), "Characterization of organic matter from composting of different residues by physicochemical and spectroscopic methods", Bioresour. Technol., 101, 1927-1934. https://doi.org/10.1016/j.biortech.2009.10.039.   DOI
146 Fuentes, M., Gonzalez-Gaitano, G., Garcia-Mina, J.M. (2006), "The usefulness of UV-visible and fluorescence spectroscopies to study the chemical nature of humic substances from soils and composts", Org. Geochem, 37, 1949-1959. https://doi.org/10.1016/j.orggeochem.2006.07.024.   DOI
147 Gamal, M., Mousa, H., El-Naas, M., Zacharia, R., Judd S. (2018), "Bio-regeneration of Activated Carbon: A Comprehensive Review", Sep. Purif. Technol., 197. https://doi.org/10.1016/j.seppur.2018.01.015.
148 Michael-Kordatou, I., Michael, C., Duan, X., He, X., Dionysiou, D.D., Mills, M.A., Fatta-Kassinos, D. (2015), "Dissolved effluent organic matter: Characteristics and potential implications in wastewater treatment and reuse applications. Water Res. 77, 213-248. https://doi.org/10.1016/j.watres.2015.03.011.   DOI
149 Klavarioti, M., Mantzavinos, D., Kassinos, D. (2009), "Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes", Environ. Int. 35, 402-417. https://doi.org/10.1016/j.envint.2008.07.009.   DOI
150 Klaus, U., Pfeifer, T., Spiteller, M. (2000), "APCI-MS/MS: A powerful tool for the analysis of bound residues resulting from the interaction of pesticides with DOM and humic substances", Environ. Sci. Technol. 34, 3514-3520. https://doi.org/10.1021/es9913129YYan.   DOI
151 Koch, B. P., & Dittmar, T. (2006), "From mass to structure: An aromaticity index for high-resolution mass data of natural organic matter", Rapid Commun. Mass Spectrm., 20(5), 926-932. https://doi.org/10.1002/rcm.2386.   DOI
152 Koch, B. P., Witt, M., Engbrodt, R., Dittmar, T., & Kattner, G. (2005), "Molecular formulae of marine and terrigenous dissolved organic matter detected by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry", Geochimica et Cosmochimica Acta, 69(13), 3299-3308. https://doi.org/10.1016/J.GCA.2005.02.027.   DOI
153 Korshin, G. V, Li, C., Benjamin, M.M. (1997), "Organic Matter Through Uv Spectroscopy: a consistent theory", Water Res. 31, 1787-1795. https://doi.org/10.1016/S0043-1354(97)00006-7.   DOI
154 Murphy K.R., R. Bro, C.A. Stedmon (2014), "Chemometric analysis of organic matter fluorescence", Aquatic organic matter fluorescence, 339-375. https://doi.org/10.1017/CBO9781139045452.016.
155 Li, P., Hur, J., (2017), Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: A review", Crit. Rev. Environ. Sci. Technol. 47, 131-154. https://doi.org/10.1080/10643389.2017.1309186.   DOI
156 Li, W.-T., Chen, S.-Y., Xu, Z.-X., Li, Y., Shuang, C.-D., Li, A.-M., (2014), "Characterization of Dissolved Organic Matter in Municipal Wastewater Using Fluorescence PARAFAC Analysis and Chromatography Multi-Excitation/Emission Scan: A Comparative Study", Environ. Sci. Technol., 48, 2603-2609. https://doi.org/10.1021/es404624q.   DOI
157 Mori, M., Itabashi, H., Ikedo, M., Tanaka, K.. (2006), "Ion-exclusion chromatography with the direct UV detection of non-absorbing inorganic cations using an anion-exchange conversion column in the iodide-form", Talanta 70, 174-177. https://doi.org/10.1016/j.talanta.2006.01.043.   DOI
158 Mostofa, K.M., Wu, F., Liu, C.-Q., Fang, W.L., Yuan, J., Ying, W.L., Wen, L., Yi M. (2010), "Characterization of Nanming River (southwestern China) sewerage-impacted pollution using an excitation-emission matrix and PARAFAC", Limnology, 11, 217-231. https://doi.org/10.1007/s10201-009-0306-4.   DOI
159 Murphy K.R., A. Hambly, S. Singh, R.K. Henderson, A. Baker, R. Stuetz, S.J. Khan (2011), "Organic Matter Fluorescence in Municipal Water Recycling Schemes: Toward a Unified PARAFAC Model", Environ. Sci. Technol. 45, 2909-2916. https://doi.org/10.1021/es103015e.   DOI
160 Murphy, K.R., Bro, R. and Stedmon, C.A., (2014), "Chemometric analysis of organic matter fluorescence", Aquatic organic matter fluorescence, 339-375. https://doi.org/10.1017/CBO9781139045452.016.
161 Nguyen, T.M.H., Suwan, P., Koottatep, T., Beck, S.E., (2019), "Application of a novel, continuous-feeding ultraviolet light emitting diode (UV-LED) system to disinfect domestic wastewater for discharge or agricultural reuse", Water Res., 153, 53-62. https://doi.org/10.1016/j.watres.2019.01.006.   DOI
162 Gassie, L.W., Englehardt, J.D. (2019), "Mineralization of greywater organics by the ozone-UV advanced oxidation process: kinetic modeling and efficiency. Environ. Sci. Water Res. Technol. 12-16. https://doi.org/10.1039/c9ew00653b.
163 Liang, S., Liu, C., Song, L., (2007), "Soluble microbial products in membrane bioreactor operation: Behaviors, characteristics, and fouling potential", Water Res., 41, 95-101. 10.1016/j.watres.2006.10.008.   DOI
164 Krasner, S.W., Westerhoff, P., Chen, B., Rittmann, B.E., Nam, S.-N., Amy, G. (2009), "Impact of Wastewater Treatment Processes on Organic Carbon, Organic Nitrogen, and DBP Precursors in Effluent Organic Matter", Environ. Sci. Technol. 43, 2911-2918. https://doi.org/10.1021/es802443t.   DOI
165 Krasner, S.W., Westerhoff, P., Chen, B., Rittmann, B.E., Nam, S.-N., Amy, G., (2009), "Impact of wastewater treatment processes on organic carbon, organic nitrogen, and DBP precursors in effluent organic matter", Environ. Sci. Technol., 43, 2911-2918. https://doi.org/10.1021/es802443t.   DOI
166 Li, W.T., Chen, S.-Y., Xu, Z.X., Li, Y., Shuang, C.-D., Li, A.-M. (2014), "Characterization of Dissolved Organic Matter in Municipal Wastewater Using Fluorescence PARAFAC Analysis and Chromatography Multi-Excitation/Emission Scan: A Comparative Study", Environ. Sci. Technol. 48, 2603-2609. https://doi.org/10.1021/es404624q.   DOI
167 Li, W.T., Xu, Z.X., Li, A.M., Wu, W., Zhou, Q., Wang, J.N. (2013), "HPLC/HPSEC-FLD with multi-excitation/emission scan for EEM interpretation and dissolved organic matter analysis", Water Res. 47, 1246-1256. https://doi.org/10.1016/j.watres.2012.11.040.   DOI
168 Li, Z.H., Yuan, L., Gao, S.X., Wang, L., Sheng, G.P. (2019), "Mitigated membrane fouling and enhanced removal of extracellular antibiotic resistance genes from wastewater effluent via an integrated pre-coagulation and microfiltration process", Water Res. 159, 145-152. https://doi.org/10.1016/j.watres.2019.05.005.   DOI
169 Lin, T., Li, L., Chen, W., Pan, S. (2012), "Effect and mechanism of preoxidation using potassium permanganate in an ultrafiltration membrane system", Desalination 286, 379-388. https://doi.org/10.1016/j.desal.2011.11.052.   DOI
170 Ge, X., Wu, Z., Cravotto, G., Manzoli, M., Cintas, P., Wu, Z., (2018), "Cork wastewater purification in a cooperative flocculation/adsorption process with microwave-regenerated activated carbon", J. Hazard. Mater., 360, 412-419. https://doi.org/10.1016/j.jhazmat.2018.08.022.   DOI
171 Ghauch, A., Tuqan, A.M., Kibbi, N. (2015), "Naproxen abatement by thermally activated persulfate in aqueous systems", Chem. Eng. J., 279, 861-873. https://doi.org/10.1016/j.cej.2015.05.067   DOI
172 Goldman J.H., S.A. Rounds, J.A. Needoba (2012), "Applications of Fluorescence Spectroscopy for Predicting Percent Wastewater in an Urban Stream", Environ. Sci. Techno., 46, 4374-4381. https://doi.org/10.1021/es2041114.   DOI
173 Gonzalez, O., Justo, A., Bacardit, J., Ferrero, E., Malfeito, J.J., Sans, C. (2013), "Characterization and fate of effluent organic matter treated with UV/H2O2 and ozonation", Chem. Eng. J., 226, 402-408. https://doi.org/10.1016/j.cej.2013.04.066.   DOI
174 Gude, V.G. (2015a), "Energy storage for desalination processes powered by renewable energy and waste heat sources", Appl. Energy. 137, 877-898. https://doi.org/10.1016/j.apenergy.2014.06.061.   DOI
175 Gude, V.G. (2015b), "Energy and water autarky of wastewater treatment and power generation systems.", Renew. Sustain. Energy Rev. 45, 52-68. https://doi.org/https://doi.org/10.1016/j.rser.2015.01.055.   DOI
176 Guo, X., Yu, H., Yan, Z., Gao, H., Zhang, Y. (2018), "Tracking variations of fluorescent dissolved organic matter during wastewater treatment by accumulative fluorescence emission spectroscopy combined with principal component, second derivative and canonical correlation analyses", Chemosphere, 194, 463-470. https://doi.org/10.1016/j.chemosphere.2017.12.023.   DOI
177 Xiao K., J.-Y. Sun, Y.-X. Shen, S. Liang, P. Liang, X.-M. Wang, X. Huang (2016), "Fluorescence properties of dissolved organic matter as a function of hydrophobicity and molecular weight: case studies from two membrane bioreactors and an oxidation ditch", RSC Advances, 6, 24050-24059. https://doi.org/10.1039/C5RA23167A.   DOI
178 Liu, S., Lim, M., Fabris, R., Chow, C.W.K., Drikas, M., Korshin, G., Amal, R. (2010), "Multi-wavelength spectroscopic and chromatography study on the photocatalytic oxidation of natural organic matter", Water Res. 44, 2525-2532. https://doi.org/10.1016/j.watres.2010.01.036.   DOI
179 Ly, Q.V., Hur, J. (2018), "Further insight into the roles of the chemical composition of dissolved organic matter (DOM) on ultrafiltration membranes as revealed by multiple advanced DOM characterization tools", Chemosphere 201, 168-177. https://doi.org/10.1016/j.chemosphere.2018.02.181.   DOI
180 Worms, I.A., Traber, J., Kistler, D., Sigg, L., Slaveykova, V.I., (2010), "Uptake of Cd (II) and Pb (II) by microalgae in presence of colloidal organic matter from wastewater treatment plant effluents", Environ. Pollut., 158, 369-374. https://doi.org/10.1016/j.envpol.2009.09.007.   DOI
181 Xiao, K., Sun, J.-Y., Shen, Y.-X., Liang, S., Liang, P., Wang, X.-M., Huang, X. (2016), "Fluorescence properties of dissolved organic matter as a function of hydrophobicity and molecular weight: case studies from two membrane bioreactors and an oxidation ditch", RSC Advances, 6, 24050-24059. https://doi.org/10.1039/C5RA23167A.   DOI
182 Xie, X., Chang, F., Li, X., Li, M., Zhu, Z. (2017), "Investigation and application of photochemically induced direct UV detection of low or non-UV absorbing compounds by capillary electrophoresis", Talanta 162, 362-367. https://doi.org/10.1016/j.talanta.2016.10.046.   DOI
183 Xing, J., Liang, H., Xu, S., Chuah, C.J., Luo, X., Wang, T., Wang, J., Li, G., Snyder, S.A. (2019), "Organic matter removal and membrane fouling mitigation during algae-rich surface water treatment by powdered activated carbon adsorption pretreatment: Enhanced by UV and UV/chlorine oxidation", Water Res. 159, 283-293. https://doi.org/10.1016/j.watres.2019.05.017.   DOI
184 Xiong, X., Wu, X., Zhang, B., Xu, H., Wang D. (2018), "The interaction between effluent organic matter fractions and Al2(SO4)3 identified by fluorescence parallel factor analysis and FT-IR spectroscopy", Colloids Surf. A Physicochem. Eng. Asp., 555, 418-428. https://doi.org/10.1016/j.colsurfa.2018.07.026.   DOI