• Title/Summary/Keyword: Technology network analysis

Search Result 3,920, Processing Time 0.033 seconds

Estimating Strain Rate Dependent Parameters of Cowper-Symonds Model Using Electrohydraulic Forming and Artificial Neural Network (액중 방전 성형과 인공신경망 기법을 활용한 Cowper-Symonds 구성 방정식의 변형률 속도 파라메터 역추정)

  • Byun, H.B.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.81-88
    • /
    • 2022
  • Numerical analysis and dynamic material properties are required to analyze the behavior of workpiece during an electrohydraulic forming (EHF) process. In this study, EHF experiments were conducted under three conditions (6, 7, 8 kV). Dynamic material properties of Al 5052-H34 were inversely estimated through an ANN (Artificial Neural Network) model constructed based on LS-Dyna analysis results. Parameters of Cowper-Symonds constitutive equation, C and p, were used to implement dynamic material properties. By comparing experimental results of three conditions with ANN model results, optimized parameters were obtained. To determine the reliability of the derived parameters, experimental results, LS-Dyna analysis results, and ANN results of three conditions were compared using MSE and SMAPE. Valid parameters were obtained because values of indicators were within confidence intervals.

Facial Expression Recognition Method Based on Residual Masking Reconstruction Network

  • Jianing Shen;Hongmei Li
    • Journal of Information Processing Systems
    • /
    • v.19 no.3
    • /
    • pp.323-333
    • /
    • 2023
  • Facial expression recognition can aid in the development of fatigue driving detection, teaching quality evaluation, and other fields. In this study, a facial expression recognition method was proposed with a residual masking reconstruction network as its backbone to achieve more efficient expression recognition and classification. The residual layer was used to acquire and capture the information features of the input image, and the masking layer was used for the weight coefficients corresponding to different information features to achieve accurate and effective image analysis for images of different sizes. To further improve the performance of expression analysis, the loss function of the model is optimized from two aspects, feature dimension and data dimension, to enhance the accurate mapping relationship between facial features and emotional labels. The simulation results show that the ROC of the proposed method was maintained above 0.9995, which can accurately distinguish different expressions. The precision was 75.98%, indicating excellent performance of the facial expression recognition model.

Text Mining and Social Network Analysis-based Patent Analysis Method for Improving Collaboration and Technology Transfer between University and Industry (산학협력 및 기술이전 촉진을 위한 텍스트마이닝과 사회 네트워크 분석 기반의 특허 분석 방법)

  • Lee, Ji Hyoung;Kim, Jong Woo
    • The Journal of Society for e-Business Studies
    • /
    • v.22 no.3
    • /
    • pp.1-28
    • /
    • 2017
  • Today, according to the increased importance of industry-university cooperation in the knowledge-based economy, support and the number of researches involved in industry-university cooperation has also steadily increased. But it is true that profits from the outcome of patents resulting from such cooperation, such as technology transfer and royalty fees, are lower than they are supposed to be, because of excessive patents applications, although some of them have little commercial potential. Therefore, this research aims to suggest a way to analyze and recognize patents, which enable efficient industry-university cooperation and technology transfer. For the analysis, data on 1,061 patents was collected from 4 different universities. With the data, a quality-strategy matrix was arranged targeting the industry-university cooperation foundations', US patents owned by universities, text mining, and social network analysis were carried out, particularly focusing on the patents in the advanced quality technology section of the matrix. Then core key words and IPC codes were obtained and key patents were analyzed by universities. As a result of the analysis, it was found that 4 key patents, 2 key IPC codes were drawn for University H, 4 key patents, 2 key IPC codes for University K, 6 key patents, 1 key IPC code for University Y, 14 key patents, and 2 key IPC codes for University S. This research is expected to have a great significance in contributing to the invigoration of industry-university cooperation based on the analysis result on patents and IPC codes, which enable efficient industry-university cooperation and technology transfer.

A Study on the Recommendation Algorithm based on Trust/Distrust Relationship Network Analysis (사용자 간 신뢰·불신 관계 네트워크 분석 기반 추천 알고리즘에 관한 연구)

  • Noh, Heeryong;Ahn, Hyunchul
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.1
    • /
    • pp.169-185
    • /
    • 2017
  • This study proposes a novel recommendation algorithm that reflects the results from trust/distrust network analysis as a solution to enhance prediction accuracy of recommender systems. The recommendation algorithm of our study is based on memory-based collaborative filtering (CF), which is the most popular recommendation algorithm. But, unlike conventional CF, our proposed algorithm considers not only the correlation of the rating patterns between users, but also the results from trust/distrust relationship network analysis (e.g. who are the most trusted/distrusted users?, whom are the target user trust or distrust?) when calculating the similarity between users. To validate the performance of the proposed algorithm, we applied it to a real-world dataset that contained the trust/distrust relationships among users as well as their numeric ratings on movies. As a result, we found that the proposed algorithm outperformed the conventional CF with statistical significance. Also, we found that distrust relationship was more important than trust relationship in measuring similarities between users. This implies that we need to be more careful about negative relationship rather than positive one when tracking and managing social relationships among users.

The Study of Service Event Relation Analysis Using Recurrent Neural Network (Recurrent Neural Network를 활용한 서비스 이벤트 관계 분석에 관한 연구)

  • Jeon, Woosung;Park, Youngsuk;Choi, Jeongil
    • Journal of Information Technology Services
    • /
    • v.17 no.4
    • /
    • pp.75-83
    • /
    • 2018
  • Enterprises need to monitor systems for reliable IT service operations to quickly detect and respond to events affecting the service, thereby preventing failures. Events in non-critical systems can be seen as a precursor to critical system incidents. Therefore, event relationship analysis in the operation of IT services can proactively recognize and prevent faults by identifying non-critical events and their relationships with incidents. This study used the Recurrent Neural Network and Long Short Term Memory techniques to create a model to analyze event relationships in a system and to verify which models are suitable for analyzing event relationships. Verification has shown that both models are capable of analyzing event relationships and that RNN models are more suitable than LSTM models. Based on the pattern of events occurring, this model is expected to support the prediction of the next occurrence of events and help identify the root cause of incidents to help prevent failures and improve the quality of IT services.

The Professors' Perception of Blended Learning through Network Analysis of Keyword: Focusing on Reflective Journal (키워드 네트워크 분석을 통한 블렌디드 러닝 수업에 대한 인식연구: 성찰일지를 중심으로)

  • Lee, Jian;Jang, Seonyoung
    • Journal of Information Technology Services
    • /
    • v.21 no.3
    • /
    • pp.89-103
    • /
    • 2022
  • The purpose of this study is to explore professors' perception of blended learning. For this purpose, the reflective journals written by 56 university professors was analyzed using the keyword network analysis method. The results of this study are as follows: First, as a result of keyword frequency analysis for the blended learning, the keywords showed the highest frequency in the order of (1) 'instructional design', 'student', 'instructional method', 'learning objective' in the area of learning, (2) 'importance', 'instruction', 'feeling', 'student' in the area of feeling, and (3) 'semester', 'plan', 'weekly', and 'instruction' in the area of action plan. Second, the results of analyzing the degree, closeness centrality, and betweenness centrality of network connection are as follows. (1) The keywords 'instruction', 'instructional method', 'instructional design', and 'learning objective' in the area of learning, (2) the keywords 'instruction', 'importance', and 'necessity' in the area of feeling, and (3) 'instruction', 'plan', and 'semester' in the area of action plan showed high values in degree, closeness centrality, and betweenness centrality. Based on the research results, implications for blended learning and professors' perception were discussed.

A Study on Influencer Food-Content Sentiment Keyword Analysis using Semantic Network based on Social Network

  • Ryu, Gi-Hwan;Yu, Chaelin;Lee, Jun Young;Moon, Seok-Jae
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.95-101
    • /
    • 2022
  • The development of the 4th industry has increased social media, and the rise of COVID-19 has stimulated non-face-to-face services. People's consumption patterns are also changing a lot due to non-face-to-face services. In this paper, food content keywords are derived through social network-based semantic network analysis, emotions are analyzed, and keywords applied to food recommendation platforms are input. We collected food, influencer, and corona keyword analysis data through Textom. A lot of research has been done through online reviews of existing influencer content. However, there is a lack of research on keyword sentiment analysis provided by influencers rather than consumers and research perspectives. This paper uploads language and topics derived through online reviews of existing publications and subscribers, and goes beyond the limits used in marketing methods. By analyzing keywords that influencers suggest when uploading content, you can apply data that applies them to food recommendation platforms and applications.

Changes in Korea Steel Industry and Formation Process of Technology-knowledge network (한국 철강산업 변화와 기술지식 네트워크 형성 과정)

  • Park, Sohyun
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.474-490
    • /
    • 2016
  • This paper investigates how Kora steel industry has experienced technological diversification, organizational flexibility, and geographical dispersion, and analyzes how technology-knowledge network has formed. The network is constructed using mutual patent data. K-medoid clustering and brokerage analysis are applied. The results indicate actors in network are diversified and links between those who belong to the same cluster get stronger. Network formation reflects affiliation, competition, and cooperation in the industry, and brokerage roles of conglomerates, research institute, and small and medium sized companies are detected.

  • PDF

Adaptive Clustering Algorithm for Recycling Cell Formation An Application of the Modified Fuzzy ART Neural Network

  • Park, Ji-Hyung;Seo, Kwang-Kyu
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.253-260
    • /
    • 1999
  • The recycling cell formation problem means that disposal products are classified into recycling part families using group technology in their end of life phase. Disposal products have the uncertainties of product status by usage influences during product use phase and recycling cells are formed design, process and usage attributes. In order to treat the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem for disposal products. In this paper, a heuristic approach for fuzzy ART neural network is suggested. The modified Fuzzy ART neural network is shown that it has a great efficiency and give an extension for systematically generating alternative solutions in the recycling cell formation problem. We present the results of this approach applied to disposal refrigerators and the comparison of performances between other algorithms. This paper introduced a procedure which integrates economic and environmental factors into the disassembly of disposal products for recycling in recycling cells. A qualitative method of disassembly analysis is developed and its aim is to improve the efficiency of the disassembly and to generated an optimal disassembly which maximize profits and minimize environmental impact. Three criteria established to reduce the search space and facilitate recycling opportunities.

  • PDF

Network-centric CAD

  • Lee, Jae-Yeol;Kim, Hyun;Lee, Joo-Haeng;Do, Nam-Chul;Kim, Hyung-Sun
    • Proceedings of the CALSEC Conference
    • /
    • 2001.08a
    • /
    • pp.615-624
    • /
    • 2001
  • Internet technology opens up another domain for building future CAD/CAM environment. The environment will be global, network-centric, and spatially distributed. In this paper, we present a new approach to network-centric virtual prototyping (NetVP) in a distributed design environment. The presented approach combines the current virtual assembly modeling and analysis technique with distributed computing and communication technology fur supporting virtual prototyping activities over the network. This paper focuses on interoperability, shape representation, and geometric processing for distributed virtual prototyping. STEP standard and CORBA-based interfaces allow the bi-directional communication between the CAD model and virtual prototyping model, which makes it possible to solve the problems of interoperability, heterogeneity of platforms, and data sharing. STEP AP203 and AP214 are utilized as a means of transferring and sharing product models. In addition, Attributed Abstracted B-rep (AAB) is introduced as 3D shape abstraction for transparent and efficient transmission of 3D models and for the maintenance of naming consistency between CAD models and virtual prototyping models over the network.

  • PDF