• Title/Summary/Keyword: Technology network analysis

Search Result 3,917, Processing Time 0.034 seconds

Universal SSR Small Signal Stability Analysis Program of Power Systems and its Applications to IEEE Benchmark Systems

  • Kim, Dong-Joon;Nam, Hae-Kon;Moon, Young-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.3
    • /
    • pp.139-147
    • /
    • 2003
  • The paper presents a novel approach of constructing the state matrix of the multi-machine power system for SSR (subsynchronous resonance) analysis using the linearized equations of individual devices including electrical transmission network dynamics. The machine models in the local d-q reference frame are integrated with the network models in the common R-I reference frame by simply transforming their output equations into the R-I frame where the transformed output is used as the input to the network dynamics or vice versa. The salient feature of the formulation is that it allows for modular construction of various component models without rearranging the overall state space formulation. This universal SSR small signal stability program provides a flexible tool for systematic analyses of SSR small-signal stability impacts of both conventional devices such as generation systems and novel devices such as power electronic apparatus and their controllers. The paper also presents its application results to IEEE benchmark models.

Network, Channel, and Geographical Proximity of Knowledge Transfer: The Case of University-Industry Collaboration in South Korea

  • Kwon, Ki-Seok;Jang, Duckhee;Park, Han Woo
    • Asian Journal of Innovation and Policy
    • /
    • v.4 no.2
    • /
    • pp.242-262
    • /
    • 2015
  • The relationship between geographical proximity and academics' formal and informal knowledge-transfer activities in the network is analyzed with a mixed research method. With social network analysis as a basis, we have explored the networks between academics and firms in the 16 regions of South Korea. The result shows Seoul and Gyunggi are identified as central nodes, meaning that the academics in other regions tend to collaborate with firms in these regions. An econometric analysis is performed to confirm the localization of knowledge-transfer activities. The intensity of formal channels measured by the number of academic papers is negatively, but significantly associated with the geographical proximity. However, we have not found any significant relationship between the formality of the channels and geographical proximity. Possibly, the regional innovation systems in South Korea are neither big enough nor strong enough to show a localization effect.

The study on the disk grinding using neural network and Input sensitivity analysis (신경망 및 입력인자 민감도 분석을 이용한 연삭디스크의 가공조건 예측에 관한 연구)

  • 이동규;유송민;이위로;신관수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.3-8
    • /
    • 2004
  • When most manufacturing company produce grinding product operators decide grinding condition by experience and subjective judgment. The study on grinding manufacture have been developed to get the grinding condition with the same result when non-experienced or experienced worker work. The objective of this study is to develope the grinding condition and predict the result of grinding by neural network. Several discussions were made in following areas as; getting MRR with image processing, the architecture optimization of neural network with experiment design, analysis of the input neurons using sensitivity approach. The results showed that the developed approach was the best method in predicting grinding condition with respect to surface finish quality.

  • PDF

Analysis of Neural Network Approaches for Nonlinear Modeling of Switched Reluctance Motor Drive

  • Saravanan, P;Balaji, M;Balaji, Nagaraj K;Arumugam, R
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1548-1555
    • /
    • 2017
  • This paper attempts to employ and investigate neural based approaches as interpolation tools for modeling of Switched Reluctance Motor (SRM) drive. Precise modeling of SRM is essential to analyse the performance of control strategies for variable speed drive application. In this work the suitability of Generalized Regression Neural Network (GRNN) and Extreme Learning Machine (ELM) in addition to conventional neural network are explored for improving the modeling accuracy of SRM. The neural structures are trained with the data obtained by modeling of SRM using Finite Element Analysis (FEA) and the trained neural network is incorporated in the model of SRM drive. The results signify the modeling accuracy with GRNN model. The closed loop drive simulation is performed in MATLAB/Simulink environment and the closeness of the results in comparison with the experimental prototype validates the modeling approach.

Sensor Fusion and Neural Network Analysis for Drill-Wear Monitoring (센서퓨젼 기반의 인공신경망을 이용한 드릴 마모 모니터링)

  • Prasopchaichana, Kritsada;Kwon, Oh-Yang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.77-85
    • /
    • 2008
  • The objective of the study is to construct a sensor fusion system for tool-condition monitoring (TCM) that will lead to a more efficient and economical drill usage. Drill-wear monitoring has an important attribute in the automatic machining processes as it can help preventing the damage of tools and workpieces, and optimizing the drill usage. In this study, we present the architectures of a multi-layer feed-forward neural network with Levenberg-Marquardt training algorithm based on sensor fusion for the monitoring of drill-wear condition. The input features to the neural networks were extracted from AE, vibration and current signals using the wavelet packet transform (WPT) analysis. Training and testing were performed at a moderate range of cutting conditions in the dry drilling of steel plates. The results show good performance in drill- wear monitoring by the proposed method of sensor fusion and neural network analysis.

A Study on Korean Sentiment Analysis Rate Using Neural Network and Ensemble Combination

  • Sim, YuJeong;Moon, Seok-Jae;Lee, Jong-Youg
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.268-273
    • /
    • 2021
  • In this paper, we propose a sentiment analysis model that improves performance on small-scale data. A sentiment analysis model for small-scale data is proposed and verified through experiments. To this end, we propose Bagging-Bi-GRU, which combines Bi-GRU, which learns GRU, which is a variant of LSTM (Long Short-Term Memory) with excellent performance on sequential data, in both directions and the bagging technique, which is one of the ensembles learning methods. In order to verify the performance of the proposed model, it is applied to small-scale data and large-scale data. And by comparing and analyzing it with the existing machine learning algorithm, Bi-GRU, it shows that the performance of the proposed model is improved not only for small data but also for large data.

Keyword Network Analysis and Topic Modeling of News Articles Related to Artificial Intelligence and Nursing (인공지능과 간호에 관한 언론보도 기사의 키워드 네트워크 분석 및 토픽 모델링)

  • Ha, Ju-Young;Park, Hyo-Jin
    • Journal of Korean Academy of Nursing
    • /
    • v.53 no.1
    • /
    • pp.55-68
    • /
    • 2023
  • Purpose: The purpose of this study was to identify the main keywords, network properties, and main topics of news articles related to artificial intelligence technology in the field of nursing. Methods: After collecting artificial intelligence-and nursing-related news articles published between January 1, 1991, and July 24, 2022, keywords were extracted via preprocessing. A total of 3,267 articles were searched, and 2,996 were used for the final analysis. Text network analysis and topic modeling were performed using NetMiner 4.4. Results: As a result of analyzing the frequency of appearance, the keywords used most frequently were education, medical robot, telecom, dementia, and the older adults living alone. Keyword network analysis revealed the following results: a density of 0.002, an average degree of 8.79, and an average distance of 2.43; the central keywords identified were 'education,' 'medical robot,' and 'fourth industry.' Five topics were derived from news articles related to artificial intelligence and nursing: 'Artificial intelligence nursing research and development in the health and medical field,' 'Education using artificial intelligence for children and youth care,' 'Nursing robot for older adults care,' 'Community care policy and artificial intelligence,' and 'Smart care technology in an aging society.' Conclusion: The use of artificial intelligence may be helpful among the local community, older adult, children, and adolescents. In particular, health management using artificial intelligence is indispensable now that we are facing a super-aging society. In the future, studies on nursing intervention and development of nursing programs using artificial intelligence should be conducted.

A Text Mining Study on Endangered Wildlife Complaints - Discovery of Key Issues through LDA Topic Modeling and Network Analysis - (멸종위기 야생생물 민원 텍스트 마이닝 연구 - LDA 토픽 모델링과 네트워크 분석을 통한 주요 이슈 발굴 -)

  • Kim, Na-Yeong;Nam, Hee-Jung;Park, Yong-Su
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.6
    • /
    • pp.205-220
    • /
    • 2023
  • This study aimed to analyze the needs and interests of the public on endangered wildlife using complaint big data. We collected 1,203 complaints and their corresponding text data on endangered wildlife, pre-processed them, and constructed a document-term matrix for 1,739 text data. We performed LDA (Latent Dirichlet Allocation) topic modeling and network analysis. The results revealed that the complaints on endangered wildlife peaked in June-August, and the interest shifted from insects to various endangered wildlife in the living area, such as mammals, birds, and amphibians. In addition, the complaints on endangered wildlife could be categorized into 8 topics and 5 clusters, such as discovery report, habitat protection and response request, information inquiry, investigation and action request, and consultation request. The co-occurrence network analysis for each topic showed that the keywords reflecting the call center reporting procedure, such as photo, send, and take, had high centrality in common, and other keywords such as dung beetle, know, absence and think played an important role in the network. Through this analysis, we identified the main keywords and their relationships within each topic and derived the main issues for each topic. This study confirmed the increasing and diversifying public interest and complaints on endangered wildlife and highlighted the need for professional response. We also suggested developing and extending participatory conservation plans that align with the public's preferences and demands. This study demonstrated the feasibility of using complaint big data on endangered wildlife and its implications for policy decision-making and public promotion on endangered wildlife.

Performance Evaluation of Distributed Clustering Protocol under Distance Estimation Error

  • Nguyen, Quoc Kien;Jeon, Taehyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.11-15
    • /
    • 2018
  • The application of Wireless Sensor Networks requires a wise utilization of limited energy resources. Therefore, a wide range of routing protocols with a motivation to prolong the lifetime of a network has been proposed in recent years. Hierarchical clustering based protocols have become an object of a large number of studies that aim to efficiently utilize the limited energy of network components. In this paper, the effect of mismatch in parameter estimation is discussed to evaluate the robustness of a distanced based algorithm called distributed clustering protocol in homogeneous and heterogeneous environment. For quantitative analysis, performance simulations for this protocol are carried out in terms of the network lifetime which is the main criteria of efficiency for the energy limited system.

A Study on the Flexible Disk Deburring Process Arc Zone Parameter Prediction Using Neural Network (신경망을 이용한 유연디스크 디버링가공 아크형상구간 인자예측에 관한 연구)

  • Yoo, Song-Min
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.681-689
    • /
    • 2009
  • Disk grinding was often applied to deburring process in order to enhance the final product quality. Inherent chamfering capability of the flexible disk grinding process in the early stage was analyzed with respect to various process parameters including workpiece length, wheel speed, depth of cut and feed. Initial chamfered edge defined as arc zone was characterized with local radius of curvature. Averaged radius and arc zone ratio was well evaluated using neural network system. Additional neural network analysis adding workpiece length showed enhance performance in predicting arc zone ratio and curvature radius with reduced error rate. A process condition design parameter was estimated using remaining input and output parameters with the prediction error rate lower than 2.0% depending on the relevant input parameter combination and neural network structure composition.

  • PDF