System thermal-hydraulic (STH) code is adopted for nuclear safety analysis. The critical flow model (CFM) is significant for the accuracy of STH simulation. To overcome the defects of current CFMs (low precision or long calculation time), a CFM based on a genetic neural network (GNN) has been developed in this work. To build a powerful model, besides the critical mass flux, the critical pressure and critical quality were also considered in this model, which was seldom considered before. Comparing with the traditional homogeneous equilibrium model (HEM) and the Moody model, the GNN model can predict the critical mass flux with a higher accuracy (approximately 80% of results are within the ±20% error limit); comparing with the Leung model and the Shannak model for critical pressure prediction, the GNN model achieved the best results (more than 80% prediction results within the ±20% error limit). For the critical quality, similar precision is achieved. The GNN-based CFM in this work is meaningful for the STH code CFM development.
The pathogenesis of mantle cell lymphoma, a special subtype of lymphoma that is invasive and indolent and has a median survival of 3 to 4 years, is still partially unexplained. Much research about genes and miRNAs has been conducted in recent years, but interactions and regulatory relations of genetic elements which may play a vital role in genesis of MCL have attracted only limited attention. The present study concentrated on regulatory relations about genes and miRNAs contributing to MCL pathogenesis. Numerous experimentally validated raw data were organized into three topology networks, comprising differentially expressed, associated and global examples. Comparison of similarities and dissimilarities of the three regulating networks, paired with the analysis of the interactions between pairs of elements in every network, revealed that the differentially expressed network illuminated the carcinogenicity mechanism of MCL and the related network further described the regulatory relations involved, including prevention, diagnosis, development and therapy. Three kinds of regulatory relations for host genes including miRNAs, miRNAs targeting genes and genes regulating miRNAs were concluded macroscopically. Regulation of the differentially expressed miRNAs was also analyzed, in terms of abnormal gene expression affecting the MCL pathogenesis. Special regulatory relations were uncovered. For example, auto-regulatory loops were found in the three topology networks, key pathways of the nodes being highlighted. The present study focused on a novel point of view revealing important influencing factors for MCL pathogenesis.
A fuzzy neural network model is presented to predict residual stress for dissimilar metal welding under various welding conditions. The fuzzy neural network model, which consists of a fuzzy inference system and a neuronal training system, is optimized by a hybrid learning method that combines a genetic algorithm to optimize the membership function parameters and a least squares method to solve the consequent parameters. The data of finite element analysis are divided into four data groups, which are split according to two end-section constraints and two prediction paths. Four fuzzy neural network models were therefore applied to the numerical data obtained from the finite element analysis for the two end-section constraints and the two prediction paths. The fuzzy neural network models were trained with the aid of a data set prepared for training (training data), optimized by means of an optimization data set and verified by means of a test data set that was different (independent) from the training data and the optimization data. The accuracy of fuzzy neural network models is known to be sufficiently accurate for use in an integrity evaluation by predicting the residual stress of dissimilar metal welding zones.
Purpose: Health technology research & development is an important area to leading future. This study examined the current trends for 'oncogene' based on the research subject network to deduce a research front. Method: Papers were extracted from PubMed database using MeSH term for studies on 'oncogenes' and further categorized as papers published by Korean. Keywords were collected from all of articles. Research subject network was generated by keywords. Research subject network was analyzed by weighted degree centrality based social network analysis and transition of research subjects was analyzed by the time series. Results: On 'oncogenes', 'Genes, ras', 'Apoptosis', 'Signal Transduction' had a high degree centrality and currently 'Antineoplastic Agents', 'Prognosis', and 'Tumor Markers, Biological' were widely conducted. Conclusion: Consistency of research trend pattern was found by analyzing oncogene network with compromised to international vs. domestic trends. Analyzing keyword networks in various subject area, those will allow us to predict the research progress and propose evidence of research & developmental strategy.
Experts participating in the knowledge expert network externalize their implicit knowledge by providing information or writing reports. Almost all the members of the network share externalized knowledge and the network facilitate the dissemination and diffusion of knowledge. Individuals reproduce another implicit knowledge by internalizing shared knowledge through the network and re-created knowledge is externalized, establishing knowledge circulation. In this paper, we analyze the expert groups of the Global Network of Korean Scientists & Engineers(KOSEN, www.kosen21.org), the Korea's No. 1 science and engineering knowledge expert community, with the application of the theory of policy network proposed by Marsh & Rhodes. According to the principal standards of policy network classification such as the number of participants, interaction among participants, consistency, distribution of resources and dependency, we categorize the KOSEN expert groups as closed policy network and opened issue network, and divide closed policy network into core community and periphery community.
Integration of the machine learning (ML) technique in all-optical networks can enhance the effectiveness of resource utilization, quality of service assurances, and scalability in optical networks. All-optical multistage interconnection networks (MINs) are implicitly designed to withstand the increasing highvolume traffic demands at data centers. However, the contention resolution mechanism in MINs becomes a bottleneck in handling such data traffic. In this paper, a select list of ML algorithms replaces the traditional electronic signal processing methods used to resolve contention in MIN. The suitability of these algorithms in improving the performance of the entire network is assessed in terms of injection rate, average latency, and latency distribution. Our findings showed that the ML module is recommended for improving the performance of the network. The improved performance and traffic grooming capabilities of the module are also validated by using a hardware testbed.
As the need for the use of big data increases, various analysis activities using big data, including SNS data, are being carried out in individuals, companies, and countries. However, existing research on predicting technology market trends has been mainly conducted using expert-dependent or patent or literature research-based data, and objective technology prediction using big data is needed. Therefore, this study aims to present a model for predicting future technologies through decision tree analysis, visualization analysis, and percentage analysis with data from social network services (SNS). As a result of the study, percentage analysis was better able to predict positive techniques compared to other analysis results, and visualization analysis was better able to predict negative techniques compared to other analysis results. The decision tree analysis was also able to make meaningful predictions.
Kang Yoon-Sik;Lee Chang-Joon;Kang Won-Jong;Lee Hee-Cheol;Park Jong-Wha
KIEE International Transactions on Electrophysics and Applications
/
v.5C
no.2
/
pp.63-66
/
2005
This paper describes analysis and pattern recognition techniques for Partial Discharge(PD) signals in Gas Insulated Switchgears (GIS). Detection of PD signals is one of the most important factors in the predictive maintenance of GIS. One of the methods of detection is electro magnetic wave detection within the Ultra High Frequency (UHF) band (300MHz $\~$ 3GHz). In this paper, PD activity simulation is generated using three types of artificial defects, which were detected by a UHF PD sensor installed in the GIS. The detected PD signals were performed on three-dimensional phi-q-n analysis. Finally, parameters were calculated and an Artificial Neural Network (ANN) was applied for PD pattern recognition. As a result, it was possible to discriminate and classify the defects.
International Journal of Computer Science & Network Security
/
v.24
no.6
/
pp.141-152
/
2024
Cyber security plays an important role in the field of IT industry and other industry too. Whenever we talk about cyber security, the word cybercrime pops out. Cybercrime is the biggest issues we are facing right now. Every 39 seconds an attacker is hacking something. Since 2008 to 2019 there are more than 8800 data breach cases is being found or filed. Even as we are aware of cybercrime and its stats, only 5% organization are fully secured and other 95% are not fully secured. According to survey 56% organization have weak controls. Basically they are not secured. Apart from taking measures cyber security are facing huge challenges or disturbs to many. This paper mainly focuses on dare to cyber security and also center of attraction is cyber security expertise, morals with changing in technology with time. [1]
Extended Reality (XR) technology, the umbrella term covering hyper-realistic technologies, is known to enhance consumer experience and is therefore developing rapidly and being utilized across various industries. Growing studies have examined XR technology and consumer experience; however, the literature has failed to fully explore hyper-realistic technology through a holistic perspective. To fill this gap, we analyzed 720 Korean and international articles through semantic network analysis and topic modeling and identified the literature on XR research in consumer experience. As a result, we extracted six main topics: "Tourism," "Buying Behavior," "XR Technology Acceptance," "Virtual Space," "Game," and "XR Environment." The results provide comprehensive insight on XR technology in consumer experience, whereas the literature is bounded on the production side as revealing a lack of academic discourse on consumer rights and responsibilities. Research reflecting the consumer welfare perspective is, therefore, recommended for future studies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.