• 제목/요약/키워드: Technology network analysis

Search Result 3,917, Processing Time 0.039 seconds

Application of artificial neural network for the critical flow prediction of discharge nozzle

  • Xu, Hong;Tang, Tao;Zhang, Baorui;Liu, Yuechan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.834-841
    • /
    • 2022
  • System thermal-hydraulic (STH) code is adopted for nuclear safety analysis. The critical flow model (CFM) is significant for the accuracy of STH simulation. To overcome the defects of current CFMs (low precision or long calculation time), a CFM based on a genetic neural network (GNN) has been developed in this work. To build a powerful model, besides the critical mass flux, the critical pressure and critical quality were also considered in this model, which was seldom considered before. Comparing with the traditional homogeneous equilibrium model (HEM) and the Moody model, the GNN model can predict the critical mass flux with a higher accuracy (approximately 80% of results are within the ±20% error limit); comparing with the Leung model and the Shannak model for critical pressure prediction, the GNN model achieved the best results (more than 80% prediction results within the ±20% error limit). For the critical quality, similar precision is achieved. The GNN-based CFM in this work is meaningful for the STH code CFM development.

Network Analysis of microRNAs, Genes and their Regulation in Mantle Cell Lymphoma

  • Deng, Si-Yu;Guo, Xiao-Xin;Wang, Ning;Wang, Kun-Hao;Wang, Shang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.457-463
    • /
    • 2015
  • The pathogenesis of mantle cell lymphoma, a special subtype of lymphoma that is invasive and indolent and has a median survival of 3 to 4 years, is still partially unexplained. Much research about genes and miRNAs has been conducted in recent years, but interactions and regulatory relations of genetic elements which may play a vital role in genesis of MCL have attracted only limited attention. The present study concentrated on regulatory relations about genes and miRNAs contributing to MCL pathogenesis. Numerous experimentally validated raw data were organized into three topology networks, comprising differentially expressed, associated and global examples. Comparison of similarities and dissimilarities of the three regulating networks, paired with the analysis of the interactions between pairs of elements in every network, revealed that the differentially expressed network illuminated the carcinogenicity mechanism of MCL and the related network further described the regulatory relations involved, including prevention, diagnosis, development and therapy. Three kinds of regulatory relations for host genes including miRNAs, miRNAs targeting genes and genes regulating miRNAs were concluded macroscopically. Regulation of the differentially expressed miRNAs was also analyzed, in terms of abnormal gene expression affecting the MCL pathogenesis. Special regulatory relations were uncovered. For example, auto-regulatory loops were found in the three topology networks, key pathways of the nodes being highlighted. The present study focused on a novel point of view revealing important influencing factors for MCL pathogenesis.

PREDICTION OF RESIDUAL STRESS FOR DISSIMILAR METALS WELDING AT NUCLEAR POWER PLANTS USING FUZZY NEURAL NETWORK MODELS

  • Na, Man-Gyun;Kim, Jin-Weon;Lim, Dong-Hyuk
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.337-348
    • /
    • 2007
  • A fuzzy neural network model is presented to predict residual stress for dissimilar metal welding under various welding conditions. The fuzzy neural network model, which consists of a fuzzy inference system and a neuronal training system, is optimized by a hybrid learning method that combines a genetic algorithm to optimize the membership function parameters and a least squares method to solve the consequent parameters. The data of finite element analysis are divided into four data groups, which are split according to two end-section constraints and two prediction paths. Four fuzzy neural network models were therefore applied to the numerical data obtained from the finite element analysis for the two end-section constraints and the two prediction paths. The fuzzy neural network models were trained with the aid of a data set prepared for training (training data), optimized by means of an optimization data set and verified by means of a test data set that was different (independent) from the training data and the optimization data. The accuracy of fuzzy neural network models is known to be sufficiently accurate for use in an integrity evaluation by predicting the residual stress of dissimilar metal welding zones.

Analysis of Research Subject Network in the Field of Oncogene (암유전자 연구주제 네트워크 분석)

  • Jang, Hae-Lan;Kang, Gil-Won;Lee, Eun-Jung;Kim, Seung-Ryul;Lee, Young-Sung
    • Journal of Korea Technology Innovation Society
    • /
    • v.15 no.2
    • /
    • pp.369-399
    • /
    • 2012
  • Purpose: Health technology research & development is an important area to leading future. This study examined the current trends for 'oncogene' based on the research subject network to deduce a research front. Method: Papers were extracted from PubMed database using MeSH term for studies on 'oncogenes' and further categorized as papers published by Korean. Keywords were collected from all of articles. Research subject network was generated by keywords. Research subject network was analyzed by weighted degree centrality based social network analysis and transition of research subjects was analyzed by the time series. Results: On 'oncogenes', 'Genes, ras', 'Apoptosis', 'Signal Transduction' had a high degree centrality and currently 'Antineoplastic Agents', 'Prognosis', and 'Tumor Markers, Biological' were widely conducted. Conclusion: Consistency of research trend pattern was found by analyzing oncogene network with compromised to international vs. domestic trends. Analyzing keyword networks in various subject area, those will allow us to predict the research progress and propose evidence of research & developmental strategy.

  • PDF

Analysis on the Type of S&T Knowledge Expert Network : A Case Study of the Global Network of Korean Scientists & Engineers (과학기술 지식전문가 정책 네트워크 유형분석 : 한민족과학기술자 네트워크(KOSEN)를 중심으로)

  • Jeong, Yion-Il;Lee, Joo-Young;Yoon, Jung-Sun
    • Journal of Information Management
    • /
    • v.36 no.4
    • /
    • pp.199-215
    • /
    • 2005
  • Experts participating in the knowledge expert network externalize their implicit knowledge by providing information or writing reports. Almost all the members of the network share externalized knowledge and the network facilitate the dissemination and diffusion of knowledge. Individuals reproduce another implicit knowledge by internalizing shared knowledge through the network and re-created knowledge is externalized, establishing knowledge circulation. In this paper, we analyze the expert groups of the Global Network of Korean Scientists & Engineers(KOSEN, www.kosen21.org), the Korea's No. 1 science and engineering knowledge expert community, with the application of the theory of policy network proposed by Marsh & Rhodes. According to the principal standards of policy network classification such as the number of participants, interaction among participants, consistency, distribution of resources and dependency, we categorize the KOSEN expert groups as closed policy network and opened issue network, and divide closed policy network into core community and periphery community.

A machine learning assisted optical multistage interconnection network: Performance analysis and hardware demonstration

  • Sangeetha Rengachary Gopalan;Hemanth Chandran;Nithin Vijayan;Vikas Yadav;Shivam Mishra
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.60-74
    • /
    • 2023
  • Integration of the machine learning (ML) technique in all-optical networks can enhance the effectiveness of resource utilization, quality of service assurances, and scalability in optical networks. All-optical multistage interconnection networks (MINs) are implicitly designed to withstand the increasing highvolume traffic demands at data centers. However, the contention resolution mechanism in MINs becomes a bottleneck in handling such data traffic. In this paper, a select list of ML algorithms replaces the traditional electronic signal processing methods used to resolve contention in MIN. The suitability of these algorithms in improving the performance of the entire network is assessed in terms of injection rate, average latency, and latency distribution. Our findings showed that the ML module is recommended for improving the performance of the network. The improved performance and traffic grooming capabilities of the module are also validated by using a hardware testbed.

Forecasting Market trends of technologies using Bigdata (빅데이터를 이용한 기술 시장동향 예측)

  • Mi-Seon Choi;Yong-Hwack Cho;Jin-Hwa Kim
    • Journal of Industrial Convergence
    • /
    • v.21 no.10
    • /
    • pp.21-28
    • /
    • 2023
  • As the need for the use of big data increases, various analysis activities using big data, including SNS data, are being carried out in individuals, companies, and countries. However, existing research on predicting technology market trends has been mainly conducted using expert-dependent or patent or literature research-based data, and objective technology prediction using big data is needed. Therefore, this study aims to present a model for predicting future technologies through decision tree analysis, visualization analysis, and percentage analysis with data from social network services (SNS). As a result of the study, percentage analysis was better able to predict positive techniques compared to other analysis results, and visualization analysis was better able to predict negative techniques compared to other analysis results. The decision tree analysis was also able to make meaningful predictions.

A Study on the Pattern Recognition Rate of Partial Discharge in GIS using an Artificial Neural Network

  • Kang Yoon-Sik;Lee Chang-Joon;Kang Won-Jong;Lee Hee-Cheol;Park Jong-Wha
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.2
    • /
    • pp.63-66
    • /
    • 2005
  • This paper describes analysis and pattern recognition techniques for Partial Discharge(PD) signals in Gas Insulated Switchgears (GIS). Detection of PD signals is one of the most important factors in the predictive maintenance of GIS. One of the methods of detection is electro magnetic wave detection within the Ultra High Frequency (UHF) band (300MHz $\~$ 3GHz). In this paper, PD activity simulation is generated using three types of artificial defects, which were detected by a UHF PD sensor installed in the GIS. The detected PD signals were performed on three-dimensional phi-q-n analysis. Finally, parameters were calculated and an Artificial Neural Network (ANN) was applied for PD pattern recognition. As a result, it was possible to discriminate and classify the defects.

Analysis on Cyber Security and Its Challenges to Society

  • Shashank Mishra;Raghav Sandhane
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.141-152
    • /
    • 2024
  • Cyber security plays an important role in the field of IT industry and other industry too. Whenever we talk about cyber security, the word cybercrime pops out. Cybercrime is the biggest issues we are facing right now. Every 39 seconds an attacker is hacking something. Since 2008 to 2019 there are more than 8800 data breach cases is being found or filed. Even as we are aware of cybercrime and its stats, only 5% organization are fully secured and other 95% are not fully secured. According to survey 56% organization have weak controls. Basically they are not secured. Apart from taking measures cyber security are facing huge challenges or disturbs to many. This paper mainly focuses on dare to cyber security and also center of attraction is cyber security expertise, morals with changing in technology with time. [1]

Literature Review of Extended Reality Research in Consumer Experience: Insight From Semantic Network Analysis and Topic Modeling

  • Hansol Choi;Hyemi Lee
    • Asia Marketing Journal
    • /
    • v.26 no.1
    • /
    • pp.45-59
    • /
    • 2024
  • Extended Reality (XR) technology, the umbrella term covering hyper-realistic technologies, is known to enhance consumer experience and is therefore developing rapidly and being utilized across various industries. Growing studies have examined XR technology and consumer experience; however, the literature has failed to fully explore hyper-realistic technology through a holistic perspective. To fill this gap, we analyzed 720 Korean and international articles through semantic network analysis and topic modeling and identified the literature on XR research in consumer experience. As a result, we extracted six main topics: "Tourism," "Buying Behavior," "XR Technology Acceptance," "Virtual Space," "Game," and "XR Environment." The results provide comprehensive insight on XR technology in consumer experience, whereas the literature is bounded on the production side as revealing a lack of academic discourse on consumer rights and responsibilities. Research reflecting the consumer welfare perspective is, therefore, recommended for future studies.