• Title/Summary/Keyword: Technology Transfer Grid

Search Result 104, Processing Time 0.023 seconds

Strategy for the Seamless Mode Transfer of an Inverter in a Master-Slave Control Independent Microgrid

  • Wang, Yi;Jiang, Hanhong;Xing, Pengxiang
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.251-265
    • /
    • 2018
  • To enable a master-slave control independent microgrid system (MSCIMGS) to supply electricity continuously, the microgrid inverter should perform mode transfer between grid-connected and islanding operations. Transient oscillations should be reduced during transfer to effectively conduct a seamless mode transfer. This study uses a typical MSCIMGS as an example and improves the mode transfer strategy in three aspects: (1) adopts a status-tracking algorithm to improve the switching strategy of the outer loop, (2) uses the voltage magnitude and phase pre-synchronization algorithm to reduce transient shock at the time of grid connection, and (3) applies the hybrid-sensitivity $H_{\infty}$ robust controller instead of the current inner loop to improve the robustness of the controller. Simulations and experiments show that the proposed strategy is more practical than the traditional proportional-derivative control mode transfer and effective in reducing voltage and current oscillations during the transfer period.

Voltage Distortion Approach for Output Filter Design for Off-Grid and Grid-Connected PWM Inverters

  • Husev, Oleksandr;Chub, Andrii;Romero-Cadaval, Enrique;Roncero-Clemente, Carlos;Vinnikov, Dmitri
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.278-287
    • /
    • 2015
  • This paper proposes a novel voltage distortion approach for output filter design based on the voltage transfer function for both off-grid and grid-connected Pulse Width Modulation (PWM) Inverters. The method explained in detail is compared to conventional methods. A comparative analysis is performed on an example of L and LCL-filter design. Simulation and experimental results for the off-grid and the grid-connected single phase inverter prove our theoretical predictions. It was found that conventional methods define redundant values of the output filter elements. Assumptions and limitations of the proposed approach are also discussed.

A Study on ID-based Authentication Scheme in AMI SmartGird Environment (스마트그리드 AMI환경에서의 ID기반 인증기법에 관한 연구)

  • Kim, Hong-Gi;Lee, Im-Yeong
    • The KIPS Transactions:PartC
    • /
    • v.18C no.6
    • /
    • pp.397-404
    • /
    • 2011
  • Recently the existing one-way electricity system that combines information and communications technology to develop smart grid technology is made active. The core infrastructure of the smart grid, AMI smart meters to AMR system, the amount of power measured at the top to MDMS transmits data store. Smart meters utilizing information and communication technology to transfer data and power because of the existing security threats are expected, including the additional security threats. It exposes the privacy of consumers and industrial systems, such as paralysis is likely to result in the loss. In this paper to respond to these security threats in the environment smart grid. Also, We propose data transfer methods between smartmeter and MDMS and between home device and MDMS.

Monitoring of Parallel Transfer Performance for MPTCP-based Globus Service (MPTCP기반 Globus 서비스 적용을 위한 병렬 전송성능 모니터링)

  • Hong, Wontaek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.354-356
    • /
    • 2021
  • For science applications that requires rapid transfer and sharing of large volume data, many efforts to improve data transfer performance have been made based on concurrency, parallelism and pipelining in data transfer applications such as Globus/GridFTP. In this paper, as a similar trial, experiments have been conducted for the expected transfer throughput enhancement by the increased number of network interface and parallelism in the Mptcp emulation environment and the result is presented.

  • PDF

A Study on Management and Transfer of Knowledge/Information/Technology for Technopoleis Vitalization (과학기술단지 활성화를 위한 지식/정보/기술 관리 및 전파에 관한 연구)

  • Sung, Tae-Kyung
    • Asia pacific journal of information systems
    • /
    • v.10 no.4
    • /
    • pp.57-75
    • /
    • 2000
  • Most current literature on knowledge and technology transfer(Appropriability Model, Dissemination Model, and Knowledge Utilization Model), describe the process of transfer in details, but has limitation in terms of their application in contemporary high-tech industries since most studies have not provided plausible explanation on levels and factors affecting transfer of knowledge and/or technology. To overcome these limitations, the four levels of knowledge and technology transfer are suggested: Knowledge and Technology Creation(Level I), Sharing(Level II), Implementation(Level III), and Commercialization(Level IV). Comprehensive literature identifies sixteen variables affecting the process and results of knowledge and technology transfer. The survey results show four key factors in knowledge and technology transfer: Communication, Distance, Equivocality, and Motivation, Communication refers to the degree to which a medium is able to efficiently and accurately conveys task-relevant information and media while distance involves both physical and cultural proximity. Equivocality refers to the degree of concreteness of knowledge and technology to be transferred while motivation involves incentives for and the recognition of the importance of knowledge and technology transfer activities. Further analysis shows that there are four distinctive clusters and they show very contrasting characteristics in terms of four key factors. The careful mapping of the four clusters on the four key factors show very informative knowledge and technology transfer patterns, the Knowledge and Technology Transfer Grid. Finally, actions to increase communication interactivity and motivation, and to reduce cultural distance and equivocality are suggested.

  • PDF

Anti-islanding Method by Harmonic Injection for Utility Interactive Inverter with Critical Load (중요부하를 갖는 계통연계형 인버터의 고조파주입에 의한 단독운전방지 기법)

  • Oh, Hyeong-Min;Choi, Se-Wan;Kim, Tae-Hee;Lee, Gi-Pung;Lee, Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.315-321
    • /
    • 2012
  • The utility-interactive inverter with critical loads should supply continuous and stable voltage to critical loads even during the grid fault. The conventional control method which performs current control for grid-connected mode and voltage control for stand-alone mode undergoes the critical load voltage variation during grid fault. The critical load voltage may have large transient when the inverter performs mode transfer after the islanding detection. Recently, the indirect current control method which does not have the transient state during not only islanding detection but also the mode transfer has been proposed. However, since the voltage control is maintained even during the grid-connected mode it is difficult to detect the islanding. This paper proposes an active anti-islanding method suitable for the indirect current control method which does not have NDZ(Non-Detection Zone).

A Study on the Heat and Mass Transfer Characteristics of Vacuum Freeze Drying Process for Porous Media (다공성 물길의 진공동결건조과정에서 얼 및 물질전달 특성에 관한 연구)

  • c. s. song
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1341-1352
    • /
    • 2001
  • Vacuum freeze drying process by which frozen water in a drying material is removed sublimation under vacuum condition, is now applied to various industrial field such as the manufacturing and packaging of pharmaceuticals in pharmaceutical industry, the drying of bio- products in bio-technology industry, the treatment of various quality food stuff in food technology, and so on. The Knowledge about the heat and mass transfer characteristics related with the vacuum freeze drying process is crucial to improve the efficiency of the process as well as the quality of dried products. In spite of increasing needs for understanding of the process, the research efforts in this fields are still insufficient. In this paper, a numerical code that can predict primary drying in a vial is developed based on the finite volume method with a moving grid system. The calculation program can handle the axis- symmetric and multi-dimensional characteristics of heat and mass transfer of the vial freeze drying process. To demonstrated the usefulness of the present analysis, a practical freeze drying of skim Milk solution in a vial is simulated and various calculation results are presented.

  • PDF

Parallel Operation Control Method of Grid-connected Inverters with Seamless Transfer for Energy Storage System in Microgrid (마이크로그리드에서 에너지 저장시스템을 위한 무순단 절체 기능을 갖는 계통연계형 인버터의 병렬운전 제어기법)

  • Park, Sung-Youl;Kim, Joo-Ha;Jung, Ah-Jin;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.200-206
    • /
    • 2016
  • In the microgrid, inverters for energy storage system are generally constructed in a parallel structure because of capacity expandability, convenience of system maintenance, and reliability improvement. Parallel inverters are required to provide stable voltage to the critical load in PCC and to accurately share the current between each inverter. Furthermore, when islanding occurs, the inverters should change its operating mode from grid-connected mode to stand-alone mode. However, during clearing time and control mode change, the conventional control method has a negative impact on the critical load, that is, severe fluctuating voltage. In this study, a parallel operation control method is proposed. This method provides seamless mode transfer for the entire transition period, including clearing time and control mode change, and has accurate current sharing between each inverter. The proposed control method is validated through simulation and experiment.

Numerical heat transfer analysis methodology for multiple materials with different heat transfer coefficient in unstructured grid for development of heat transfer analysis program for 3 dimensional structure of building (건물의 3차원 구조체에 대한 전열해석 프로그램 개발 중 서로 다른 열전도율을 갖는 복합재질 3차원 구조의 비정렬 격자에 대한 전산해석 방법)

  • Lee, Juhee;Jang, Jinwoo;Lee, Hyeonkyun;Lee, Youngjun;Lee, Kyusung
    • KIEAE Journal
    • /
    • v.16 no.1
    • /
    • pp.81-87
    • /
    • 2016
  • Purpose: Heat transfers phenomena are described by the second order partial differential equation and its boundary conditions. In a three-dimensional structure of a building, the heat transfer phenomena generally include more than one material, and thus, become complicate. The analytic solutions are useful to understand heat transfer phenomena, but they can hardly be applied in engineering or design problems. Engineers and designers have generally been forced to use numerical methods providing reliable results. Finite volume methods with the unstructured grid system is only the suitable means of the analysis for the complex and arbitrary domains. Method: To obtain an numerical solution, a discretization method, which approximates the differential equations, and the interpolation methods for temperature and heat flux between two or more materials are required. The discretization methods are applied to small domains in space and time, and these numerical solutions form the descretized equations provide approximated solutions in both space and time. The accuracy of numerical solutions is dependent on the quality of discretizations and size of cells used. The higher accuracy, the higher numerical resources are required. The balance between the accuracy and difficulty of the numerical methods is critical for the success of the numerical analysis. A simple and easy interpolation methods among multiple materials are developed. The linear equations are solved with the BiCGSTAB being a effective matrix solver. Result: This study provides an overview of discretization methods, boundary interface, and matrix solver for the 3-dimensional numerical heat transfer including two materials.

A Fixed Grid Finite Volume Analysis of Multi-Dimensional Freeze Drying Process under Vacuum Condition (고정격자계에서 유한체적법을 이용한 진공동결건조 과정의 열 및 물질전달에 대한 연구)

  • Chi-Sung, Song
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.981-992
    • /
    • 2004
  • Freeze drying under vacuum condition is a complex process that involves simultaneous heat and mass transfer, sublimation of ice, and motion of sublimation front. Proper treatment of the motion of sublimation interface is crucial for an accurate prediction of the freeze drying process. Based on the enthalpy formulation that has been successfully used in liquid/solid phase change problems. a fixed grid method. streamlined for the freeze drying analysis. was developed in this study. The accuracy of the fixed grid method was checked by solving a one-dimensional tray freeze drying and a two-dimensional vial freeze drying problem and then comparing the results with those by the moving grid method. Finally. the freeze drying characteristics of two-dimensional slab and axis-symmetric cylinder was investigated using the fixed grid method.