• 제목/요약/키워드: Technology Intelligence

검색결과 3,513건 처리시간 0.029초

비지도 학습 기반의 임베딩과 오토인코더를 사용한 침입 탐지 방법 (Intrusion Detection Method Using Unsupervised Learning-Based Embedding and Autoencoder)

  • 이준우;김강석
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권8호
    • /
    • pp.355-364
    • /
    • 2023
  • 최근 지능화된 사이버 위협이 지속적으로 증가함에 따라 기존의 패턴 혹은 시그니처 기반의 침입 탐지 방식은 새로운 유형의 사이버 공격을 탐지하는데 어려움이 있다. 따라서 데이터 학습 기반 인공지능 기술을 적용한 이상 징후 탐지 방법에 관한 연구가 증가하고 있다. 또한 지도학습 기반 이상 탐지 방식은 학습을 위해 레이블 된 이용 가능한 충분한 데이터를 필요로 하기 때문에 실제 환경에서 사용하기에는 어려움이 있다. 최근에는 정상 데이터로 학습하고 데이터 자체에서 패턴을 찾아 이상 징후를 탐지하는 비지도 학습 기반의 방법에 대한 연구가 활발히 진행되고 있다. 그러므로 본 연구는 시퀀스 로그 데이터로부터 유용한 시퀀스 정보를 보존하는 잠재 벡터(Latent Vector)를 추출하고, 추출된 잠재 벡터를 사용하여 이상 탐지 학습 모델을 개발하는데 있다. 각 시퀀스의 특성들에 대응하는 밀집 벡터 표현을 생성하기 위하여 Word2Vec을 사용하였으며, 밀집 벡터로 표현된 시퀀스 데이터로부터 잠재 벡터를 추출하기 위하여 비지도 방식의 오토인코더(Autoencoder)를 사용하였다. 개발된 오토인코더 모델은 시퀀스 데이터에 적합한 순환신경망 GRU(Gated Recurrent Unit) 기반의 잡음 제거 오토인코더, GRU 네트워크의 제한적인 단기 기억문제를 해결하기 위한 1차원 합성곱 신경망 기반의 오토인코더 및 GRU와 1차원 합성곱을 결합한 오토인코더를 사용하였다. 실험에 사용된 데이터는 시계열 기반의 NGIDS(Next Generation IDS Dataset) 데이터이며, 실험 결과 GRU 기반의 오토인코더나, 1차원 합성곱 기반의 오토인코더를 사용한 모델보다 GRU와 1차원 합성곱을 결합한 오토인코더가 훈련 데이터로부터 유용한 잠재 패턴을 추출하기 위한 학습 시간적 측면에서 효율적이었고 이상 탐지 성능 변동의 폭이 더 작은 안정된 성능을 보였다.

이미지 조작 탐지를 위한 포렌식 방법론 (A Forensic Methodology for Detecting Image Manipulations)

  • 이지원;전승제;박윤지;정재현;정두원
    • 정보보호학회논문지
    • /
    • 제33권4호
    • /
    • pp.671-685
    • /
    • 2023
  • 인공지능이 이미지 편집 기술에 적용되어 조작 흔적이 거의 없는 고품질 이미지를 생성할 수 있게 되었다. 그러나 이러한 기술들은 거짓 정보 유포, 증거 인멸, 사실 부인 등의 범죄 행위에 악용될 수 있기 때문에 이에 대응하기 위한 방안이 필요하다. 본 연구에서는 이미지 조작을 탐지하기 위해 이미지 파일 분석과 모바일 포렌식 아티팩트 분석을 수행한다. 이미지 파일 분석은 조작된 이미지의 메타데이터를 파싱하여 Reference DB와 비교분석을 통해 조작여부를 탐지하는 방법이다. Reference DB는 이미지의 메타데이터에 남는 조작 관련 아티팩트를 수집하는 데이터베이스로서, 이미지 조작을 탐지하는 기준이 된다. 모바일 포렌식 아티팩트 분석은 이미지 편집 도구와관련된 패키지를 추출하고 분석하여 이미지 조작을 탐지하도록 한다. 본 연구에서 제안하는 방법론은 기존의 그래픽적 특징기반 분석의 한계를 보완하고, 이미지 처리 기법과 조합하여 오탐을 줄일 수 있도록 한다. 연구 결과는 이러한 방법론이 디지털 포렌식 조사 및 분석에 유의미하게 활용될 수 있음을 보여준다. 또한, 조작된 이미지 데이터셋과 함께 이미지 메타데이터 파싱 코드와 Reference DB를 제공하여 관련 연구에 기여하고자 한다.

79종의 임플란트 식별을 위한 딥러닝 알고리즘 (Deep learning algorithms for identifying 79 dental implant types)

  • 공현준;유진용;엄상호;이준혁
    • 구강회복응용과학지
    • /
    • 제38권4호
    • /
    • pp.196-203
    • /
    • 2022
  • 목적: 본 연구는 79종의 치과 임플란트에 대해 딥러닝을 이용한 식별 모델의 정확도와 임상적 유용성을 평가하는 것을 목적으로 하였다. 연구 재료 및 방법: 2001년부터 2020년까지 30개 치과에서 임플란트 치료를 받은 환자들의 파노라마 방사선 사진에서 총 45396개의 임플란트 고정체 이미지를 수집했다. 수집된 임플란트 이미지는 18개 제조사의 79개 유형이었다. 모델 학습을 위해 EfficientNet 및 Meta Pseudo Labels 알고리즘이 사용되었다. EfficientNet은 EfficientNet-B0 및 EfficientNet-B4가 하위 모델로 사용되었으며, Meta Pseudo Labels는 확장 계수에 따라 두 가지 모델을 적용했다. EfficientNet에 대해 Top 1 정확도를 측정하고 Meta Pseudo Labels에 대해 Top 1 및 Top 5 정확도를 측정하였다. 결과: EfficientNet-B0 및 EfficientNet-B4는 89.4의 Top 1 정확도를 보였다. Meta Pseudo Labels 1은 87.96의 Top 1 정확도를 보였고, 확장 계수가 증가한 Meta Pseudo Labels 2는 88.35를 나타냈다. Top 5 정확도에서 Meta Pseudo Labels 1의 점수는 97.90으로 Meta Pseudo Labels 2의 97.79보다 0.11% 높았다. 결론: 본 연구에서 임플란트 식별에 사용된 4가지 딥러닝 알고리즘은 모두 90%에 가까운 정확도를 보였다. 임플란트 식별을 위한 딥러닝의 임상적 적용 가능성을 높이려면 더 많은 데이터를 수집하고 임플란트에 적합한 미세 조정 알고리즘의 개발이 필요하다.

CNN 기반 감성 변화 패턴을 이용한 가짜뉴스 탐지 (Fake News Detection Using CNN-based Sentiment Change Patterns)

  • 이태원;박지수;손진곤
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권4호
    • /
    • pp.179-188
    • /
    • 2023
  • 최근 가짜뉴스는 뉴스 콘텐츠 형식을 가장하고 중요한 사건이 발생할 때마다 등장하여 사회적 혼란을 초래한다. 이에 가짜뉴스를 탐지하기 위한 연구로 인공지능 기술이 사용된다. 자연어 처리를 통해 가짜뉴스를 자동으로 인지 및 차단하거나, 네트워크 인과 추론과 결합함으로써 허위 정보를 확산시키는 소셜미디어 인플루언스 계정을 감지하는 등의 가짜뉴스 탐지 접근법이 딥러닝을 통해 구현될 수 있었다. 그러나 가짜뉴스 탐지는 여러 자연어 처리 분야 중에서도 해결이 어려운 문제로 분류된다. 가짜뉴스가 가지는 형식 및 표현의 다양성으로 특성 추출의 난도가 높고, 뉴스가 속한 범주에 따라 하나의 특성이 서로 다른 의미를 가질 수도 있는 등 다양한 한계점이 존재한다. 본 논문에서는 가짜뉴스를 탐지하기 위한 추가적인 식별 기준으로 감성 변화 패턴을 제시한다. 합성곱 신경망을 가짜뉴스 데이터 세트에 적용하여 콘텐츠 특성에 기반한 분석을 수행하고, 감성 변화 패턴을 추가로 분석함으로써 성능이 개선된 모델을 제안한다. 뉴스를 구성하는 문장에 대하여 감성 극성을 산출하고 장단기 메모리를 적용함으로써 문장 순서에 의존적인 결괏값을 얻을 수 있다. 이를 감성 변화의 패턴으로 정의하고 뉴스의 콘텐츠 특성과 결합하여 가짜뉴스 탐지를 위한 제안 모델의 독립변수로 활용한다. 제안 모델과 비교 모델을 딥러닝으로 학습시키고 가짜뉴스 데이터 세트를 이용한 실험을 진행하여 감성 변화 패턴이 가짜뉴스 탐지 성능을 개선할 수 있음을 확인한다.

딥러닝 기반 국내 지반의 지지층 깊이 예측 (Deep Learning based Estimation of Depth to Bearing Layer from In-situ Data)

  • 장영은;정재호;한진태;유용균
    • 한국지반공학회논문집
    • /
    • 제38권3호
    • /
    • pp.35-42
    • /
    • 2022
  • 지반조사방법 중 표준관입시험 결과인 N치를 통해 알 수 있는 지반 지지층의 깊이는 각종 지반 구조물의 설계를 위한 기본적인 지반 정보를 제공하는 중요한 지표이다. 이러한 지반조사 결과는 시간과 비용 측면을 고려해 간헐적으로 수행될 수밖에 없으며, 그 결과는 현장 지반의 대표성을 갖게 된다. 그러나 지반 내에는 다양한 지층 변동성 및 불확실성이 존재하므로 간헐적인 현장조사를 통해 지반의 특성을 모두 파악하는 것은 어렵다. 따라서 시추공 정보로부터 미계측 지점을 예측하기 위한 방법들이 제시되어 왔으며, 대표적인 방법으로는 공간보간기법인 크리깅(Krigging), 역거리가중법(IDW)등이 있다. 최근에는 보간기법의 정확성을 높이기 위해 지반분야와 딥러닝 기술을 접목한 연구들이 수행되고 있다. 본 연구에서는 약 2만 2천공의 지반조사 결과를 바탕으로 딥러닝과 공간보간기법으로 지반 지지층 깊이 예측을 위한 비교 연구를 수행하였다. 이를 위해 딥러닝 알고리즘인 완전연결 네트워크와 포인트넷 방법, 공간보간기법으로는 IDW를 사용하였다. 각 분석 모델의 지지층 예측 결과 중 오차의 평균은 IDW가 3.01m 였으며, 완전연결 네트워크 및 포인트넷이 각 3.22m와 2.46m 였다. 결과의 표준편차는 IDW가 3.99였으며, 완전연결네트워크와 포인트넷이 3.95와 3.54로 나타났다. 연구 결과 3차원 정보에 특화된 포인트넷 구조를 적용한 네트워크가 IDW 및 완전연결 네트워크에 비해 개선된 결과를 나타냈다.

개인정보 자기결정권 확대를 위한 데이터 신탁제도 도입 방안 연구 (A Study on the Introductioin of Data Trusts System to Expand the Rights of Privacy Self-Determination)

  • 장근재;이승용
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.29-43
    • /
    • 2022
  • 데이터 경제는 현대 사회에서 디지털 혁신과 함께 빠르게 성장하고 있다. 기업은 다양한 유형의 데이터를 수집·활용하여 새로운 수익을 창출하길 희망하고, 개인정보를 포함한 데이터의 가치는 더욱 높아지고 있다. 하지만 데이터 산업 정책에 대한 연구 중 정보 주체에 대한 논의는 부족한 상황이다. 개인정보는 보호 가치를 넘어서 높은 유용성을 가지고 있다. 이러한 관점에서 데이터 신탁제도는 개인정보의 안전한 활용을 위한 좋은 해결책이다. 데이터 신탁을 활용한 구글의 토론토 스마트시티 구축 사례, 일본의 정보은행 사례, 국내 최초의 데이터 배당을 시도한 경기도의 사례를 소개한다. 데이터 신탁 사례와 동향 파악을 통해 데이터 신탁 개념을 명확히 하고 제도 활성화에 필요한 기술적 요인을 추출하고 비즈니스 모델을 제안하고자 한다. 이를 시사점으로 하여 데이터 신탁제도를 통해 안전한 데이터의 활용과 새로운 서비스 시장 창출뿐만 아니라 새로운 데이터 경제를 구성하는데 크게 기여할 것으로 기대한다.

수탁사 개인정보 관리 수준 점검 항목의 상대적 중요도 분석 (Relative Importance Analysis of Management Level Diagnosis for Consignee's Personal Information Protection)

  • 임동성;이상준
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제8권2호
    • /
    • pp.1-11
    • /
    • 2018
  • 최근 ICT와 함께 IoT, 클라우드, 인공지능 등의 신기술들이 정보화 사회를 폭발적으로 변화 시키고 있다. 그러나 APT(Advanced Persistent Threat), 악성 코드, 랜섬웨어 등 최신 위협과 개인정보 처리 위탁 업무 확대로 수탁사 관련 개인정보 유출 사고도 더욱 더 증가하고 있다. 따라서 수탁사 보안 강화를 위해 본 연구는 위수탁 개요 및 특징, 보안 표준 관리 체계, 선행 연구들을 현황 분석하여 점검 항목을 도출하였다. 그리고 수탁관련 정보통신망법, 개인정보보호법 등의 법률들을 분석 매핑한 후 최종 수탁사 개인정보 보호 관리 수준 점검 항목들을 도출하고 이를 토대로 AHP 모형에 적용하여, 점검 항목간 상대적 중요도를 확인하였다. 실증 분석 결과 내부관리체계 수립, 개인정보 암호화, 생명주기, 접근 권한 관리 등의 순으로 중요도 우선 순위가 나타났다. 본 연구의 의의는 수탁사 개인정보 취급시 요구되는 점검 항목을 도출하고 연구 모형을 실증함으로써 고객 정보 유출 위험 감소 및 수탁사의 개인정보 보호 관리 수준을 향상시킬 수 있으며, 점검 항목의 상대적 중요도를 고려하여 점검 활동을 수행한다면 투입 시간 및 비용에 대한 효과성을 높일 수 있을 것이다.

천문 고문헌 특화 인공지능 자동번역 서비스 시스템 개발 연구 - 시스템 요구사항 분석 및 설계 위주 (Study on the development of automatic translation service system for Korean astronomical classics by artificial intelligence - Focused on system analysis and design step)

  • Seo, Yoon Kyung;Kim, Sang Hyuk;Ahn, Young Sook;Choi, Go-Eun;Choi, Young Sil;Baik, Hangi;Sun, Bo Min;Kim, Hyun Jin;Lee, Sahng Woon
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.62.2-62.2
    • /
    • 2019
  • 한국의 고천문 자료는 삼국시대 이후 근대 조선까지 다수가 존재하여 세계적으로 드문 기록 문화를 보유하고 있으나, 한문 번역이 많이 이루어지지 않아 학술적 활용이 활발하지 못한 상태이다. 고문헌의 한문 문장 번역은 전문인력의 수작업에 의존하는 만큼 소요 시간이 길기에 투자대비 효율성이 떨어지는 편이다. 이에 최근 여러 분야에서 응용되는 인공지능의 적용을 대안으로 삼을 수 있으며, 초벌 번역 수준일지라도 자동번역기의 개발은 유용한 학술도구가 될 수 있다. 한국천문연구원은 한국정보화진흥원이 주관하는 2019년도 Information and Communication Technology 기반 공공서비스 촉진사업에 한국고전번역원과 공동 참여하여 인공신경망 기계학습이 적용된 고문헌 자동번역모델을 개발하고자 한다. 이 연구는 고천문 도메인에 특화된 인공지능 기계학습 기법으로 자동번역모델을 개발하여 이를 서비스하는 것을 목적으로 한다. 연구 방법은 크게 4가지 개발을 진행하는 것으로 나누어 볼 수 있다. 첫째, 인공지능의 학습 데이터에 해당되는 '코퍼스'를 구축하는 것이다. 이는 고문헌의 한자 원문과 한글 번역문이 쌍을 이루도록 만들어 줌으로써 학습에 최적화한 데이터를 최소 6만 개 이상 추출하는 것이다. 둘째, 추출된 학습 데이터 코퍼스를 다양한 인공지능 기계학습 기법에 적용하여 천문 분야 특수고전 도메인에 특화된 자동번역 모델을 생성하는 것이다. 셋째, 클라우드 기반에서 참여 기관별로 소장한 고문헌을 자동 번역 모델에 기반하여 도메인 특화된 모델로 도출 및 활용할 수 있는 대기관 서비스 플랫폼 구축이다. 넷째, 개발된 자동 번역기의 대국민 개방을 위해 웹과 모바일 메신저를 통해 자동 번역 서비스를 클라우드 기반으로 구축하는 것이다. 이 연구는 시스템 요구사항 분석과 정의를 바탕으로 설계가 진행 또는 일부 완료되어 구현 중에 있다. 추후 이 연구의 성능 평가는 자동번역모델 평가와 응용시스템 시험으로 나누어 진행된다. 자동번역모델은 평가용 테스트셋에 의한 자동 평가와 전문가에 의한 휴먼 평가에 따라 모델의 품질을 수치로 측정할 수 있다. 또한 응용시스템 시험은 소프트웨어 방법론의 개발 단계별 테스트를 적용한다. 이 연구를 통해 고천문 분야가 인공지능 자동번역 확산 플랫폼 시범의 첫 케이스라는 점에서 의의가 있다. 즉, 클라우드 기반으로 시스템을 구축함으로써 상대적으로 적은 초기 비용을 투자하여 활용성이 높은 한문 문장 자동 번역기라는 연구 인프라를 확보하는 첫 적용 학문 분야이다. 향후 이를 활용한 고천문 분야 학술 활동이 더욱 활발해질 것을 기대해 볼 수 있다.

  • PDF

고고 디지털 아카이브 구축의 과제와 전략 (Strategies and Challenges in Digitizing Archaeological Data)

  • 김범철
    • 헤리티지:역사와 과학
    • /
    • 제56권1호
    • /
    • pp.6-19
    • /
    • 2023
  • 자료관리와 정보력이 국력의 척도가 되었으나, 디지털 기술에의 의존 증대로 인한 위험마저 높아진 미묘한 상황을 맞고 있다. 그런 변화의 속도가 빠른 만큼 기존 자료의 디지털 전환 및 디지털 자료관리의 중요성도 급격히 증대되고 있다. 고고자료와 정보도 예외일 수는 없다. 과거에 산발적으로 이루어지던 디지털화를 좀 더 전면적이고 체계적으로 신속하게 수행하지 않을 수 없게 되었다. 그런 작업의 효과적인 진행을 위해서는, 디지털 아카이브에 포함될 고고자료의 특징에 대한 분명한 인식이 선행되어야 할 듯하다. 고고자료는 발굴이라는 원천을 파괴하는 과정을 통해 자료가 생성된다는 점, 장구한 시간대에 걸친 다방면의 인류 과거 경험을 연구 대상으로 하는바, 축적되는 자료의 종류가 다각적이고 그 양이 방대할 수밖에 없다는 점, 원본 수기자료(사진, 도면, 야장 등)의 자연적 소멸에 따른 피해가 심각하다는 점 등을 특징으로 한다. 이러한 특징은 디지털 암흑기를 맞을 경우, 원상 복구의 어려움이 상상을 초월할 정도로 커지게 할 수밖에 없다. 현재 경향과 자료의 특성을 동시에 고려해야만 지속가능한 고고 디지털 아카이브의 구축의 전략이 수립될 것이다. 필자는 소비자인 인문학도의 입장에서 ① 디지털 관리책무 체제 확충, ② 활용성에 대한 인식과 역량의 제고, ③ (국제) 공조적 체계의 구축, ④ 디지털고고학 플랫폼으로의 도약 등을 그 전략으로 제안한다.

박사학위를 소지한 기독교인 시니어의 신앙과 삶에 관한 질적연구: 신앙, 부르심, 노인사역에 관한 제언 (A Qualitative Study on the Faith and Life of a Christian Senior with a Doctoral Degree: Suggestions for Faith, Calling, and Senior Ministry)

  • 유은희;김성원
    • 기독교교육논총
    • /
    • 제72권
    • /
    • pp.117-146
    • /
    • 2022
  • 연구 목적 : 본 연구의 목적은 박사학위를 소지한 기독교인 시니어의 신앙, 학문으로 부르심과 사명을 포함하는 삶의 경험, 그리고 그들의 지혜와 경험에 근거하여 제안하는 교회의 시니어 사역을 이해하고자 함이다. 연구 내용 및 방법 : 연구 목적을 위해 65세 이상이며 박사학위를 취득하고 전임 혹은 비전임으로 교수직을 수행한 경험이 있으며 기독교 신앙과 교회의 시니어 사역에 관한 경험을 잘 말해줄 수 있는 7명의 연구참여자를 면담하였다. 연구참여자들에게 성숙한 신앙은 말과 행동을 통해 드러나는 하나님 경외의 모습과 죽음 이후의 영생을 소망하는 믿음이었다. 그들은 학문으로의 부르심과 기회를 은혜와 책임으로 받아들였고 은퇴 이후에도 지속적으로 사역을 하고 있으며 평생 몸에 밴습관과 영원한 목표인 텔로스가 있었다. 노인을 위한 사역에 관하여 노인을 지혜와 삶이라는 자원을 가진 자로 인식하는 것과 상시로 긴박하게 진행되는 시니어 사역을 제안하였다. 후자와 관련하여 영혼을 깨우는 사역, 주중에도 지속되는 사역, 비대면·온라인 사역의 활성화를 구체적으로 제안하였다. 결론 및 제언 : 영원한 목표와 가치 있고 의미 있는 일을 함으로 오는 충족감, 경건과 도덕성과 지성적 측면에서 정체되지 않고 달려갈 길을 온전히 마치려는 열정으로 채워진 삶이 연구참여자를 넘어선 모든 노인의 삶의 성격이 될 수 있도록 은퇴 이후 삶의 준비와 이를 위한 교회의 교육적 사역은 은퇴 이전부터 시작될 필요가 있다.