• Title/Summary/Keyword: Technology Fusion

Search Result 2,905, Processing Time 0.04 seconds

A Study on Forecast of the Promising Fusion Technology by US Patent Analysis (특허분석을 통한 유망융합기술의 예측)

  • Gang, Hui-Jong;Eom, Mi-Jeong;Kim, Dong-Myeong
    • Journal of Technology Innovation
    • /
    • v.14 no.3
    • /
    • pp.93-116
    • /
    • 2006
  • This study provides a quantitative forecasting method to identify promising fusion technology and it also applies the method based on patent analysis to IT. This study defines fusion technology, promising technology, fusion index, promising index and promising fusion technology. From the analysis, this study found that the next generation computer network is the most promising in IT area. This result is consistent with the forecasts made by the interviews and discussion of experts.

  • PDF

Effect of Manufacturing Method and Acidifier on the Dissolution Rate of Carvedilol from Solid Dispersion Formulations

  • Lim, Dong-Kyun;Bae, Jeong-Woo;Song, Byung-Joo;Jo, Han-Su;Kim, Hyoung-Eun;Lee, Dong-Won;Khang, Gil-Son
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.6
    • /
    • pp.363-369
    • /
    • 2011
  • In this study, we demonstrated the release behavior of carvedilol with the content of polyvinylpyrrolidone K-30 (PVP K-30) and the effect of citric acid and fumaric acid as acidifiers on the release behavior of drug. In addition, it tries to inquire into the release behavior difference of the carvedilol according to the manufacturing method. The release behavior of the tablets was compared with Dilatrand$^{(R)}$ in the simulated gastric fluid (pH1.2). Differential scanning calorimeter (DSC), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) were characterized for the physicochemical properties of the tablets. In case of mixing the carvedilol and PVP K-30, in case the ratio of the carvedilol and PVP K-30 was 1:5, the release behavior was the highest among. As well as the dissolution rate of tablets manufactured by lyophilization and rotary evaporator was higher than physical mixture. The dissolution rate of containing acidifiers was more improved. But, rather the excessive amount of the acidifier addition reduced the dissolution rate.

Improved Dissolution Behavior of Aceclofenac Loadings with Kollidon VA 64 Using Spray Drying and Rotary Evaporation Process (분무건조와 용매증발을 이용한 Kollidon VA 64에 포접된 아세클로페낙의 개선된 용출 거동)

  • Yang, Jaewon;Park, Jin Young;Lee, Cheon Jung;Kim, Hye Min;Lee, Hyun Gu;Jang, Na Gum;Ko, Hyun Ah;Cho, Seon Ah;Yang, Dae Hyeok;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.6-12
    • /
    • 2015
  • In order to improve the poor water solubility of aceclofenac, it was loaded into solid Kollidon VA 64 dispersion prepared by spray drying and rotary evaporation methods using different drug and polymer ratios. Morphology and physicochemical behavior of the aceclofenac loaded solid dispersions was analyzed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), and differential scanning calorimetry (DSC). Encapsulation efficiency and dissolution behavior in a simulated intestinal juice of aceclofenac in the solid dispersions was measured using HPLC and the latter was compared with that of the active pharmaceutical ingredient (API) and Airtal$^{(R)}$. It was demonstrated that two methods could significantly improve the dissolution behavior of aceclofenac.

Release Behavior of Olmesartan Medoxomil from Solid Dispersion Prepared by PVP Addition (PVP 첨가에 의해 제조된 올메사탄 메독소밀 고체분산체의 방출패턴 연구)

  • Oh, Seung-Chang;Lee, Cheon Jung;Lee, Hyun Gu;Park, Jin Young;Jeong, Hyun Ki;Kim, Young-Lae;Lim, Dong-Kwon;Lee, Dongwon;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.33-39
    • /
    • 2015
  • Olmesartan affiliated to biopharmaceutics classification system class 2 is a poorly water soluble drug. For this reason, olmesartan showed a low bioavailability and a lot of difficulties in the process of designing the pharmaceutical formulation. We prepared the solid dispersions of olmesartan. We confirmed the dissolution rate of drug which was prepared by manufacturing. The pharmaceutical formulation of solid dispersions was designed by using PVP as water soluble polymer. We analyzed morphological feature of solid dispersion by employing a scanning electron microscope. Then, the crystalline property of solid dispersion was confirmed through X-ray diffraction and differential scanning calorimeter. Also, the chemical change of solid dispersion was confirmed by the Fourier transform infrared spectroscopy. In vitro dissolution test was used to analyze the dissolution rate of solid dispersion. The prepared solid dissolution olmesartan confirmed the dissolution rate in the pH 1.2. It was compared with olmetec and improved dissolution rate through solid dispersion.

Preparation and Release Behavior of Atorvastatin Calcuim - Encapsulated Polyoxalate Microspheres (아토르바스타틴 칼슘을 함유한 폴리옥살레이트 미립구의 제조 및 방출거동)

  • Lee, Cheon Jung;Kim, Su Young;Lee, Hyun Gu;Yang, Jaewon;Park, Jin Young;Cha, Se Rom;Lim, Dong-Kwon;Lee, Dongwon;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.656-663
    • /
    • 2014
  • Atorvastatin calcium-loaded polyoxalate (POX) microspheres were prepared by an emulsion solvent-evaporation/ extraction method of oil-in-oil-in-water ($O_1/O_2/W$) for sustained release. We investigated the release behavior according to initial drug ratio, molecular weight ($M_w$) and concentration of POX and concentration of emulsifier. The microsphere was characterized on the surface, the cross-section morphology and the behavior of atorvastatin calcium release for 10 days by scanning electron microscopy (SEM) and high performance liquid chromatography (HPLC). The analysis of crystallization was analyzed to use X-ray diffraction (XRD), differential scanning calorimeter (DSC) and Fourier transform infrared (FTIR). These results showed that the release behaviors can be controlled by preparation conditions.

The Necessity and Future Challenges of Science, Technology, Society and Humanities Fusion Research in Korea

  • Song, Wichin
    • STI Policy Review
    • /
    • v.1 no.4
    • /
    • pp.29-39
    • /
    • 2010
  • Science, technology, society and humanities (STSH) fusion research is aimed at creating new research areas and methods that can resolve complicated issues in society that cannot be solved by a single academic discipline. This study identifies initiatives that can promote STSH fusion research in Korea. We review the definition and characteristics of STSH fusion research to analyze the necessity of STSH fusion research with a focus on the structural changes in the S&T environment. The emergence and diffusion of generic technologies, transition to post catch-up innovation mode, and the evolution of policy to the third generation innovation policy are identified as notable changes. This paper briefly reviews the status of fusion research underway and presents initiatives to promote STSH fusion research.

Manufacturing of Organic Light Emitting Display by Polymer Inkjet Printing

  • Kim, Myong-Ki;Shin, Kwon-Yong;Lee, Sang-Ho;Hwang, Jun-Young;Kang, Heui-Seok;Kang, Kyung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1476-1478
    • /
    • 2009
  • The characteristics of polymer inkjet printing were investigated systematically in this paper. PEDOT/PSS as a hole injection layer and MEH-PPV as a light emitting layer were used for inkjet printing experiment. Inkjet head controlling technology and surface modification technology were also applied for polymer inkjet printing. With the developed polymer inkjet printing technology, OLED(Organic Light Emitting Display) was successfully fabricated and demonstrated.

  • PDF