DOI QR코드

DOI QR Code

Improved Dissolution Behavior of Aceclofenac Loadings with Kollidon VA 64 Using Spray Drying and Rotary Evaporation Process

분무건조와 용매증발을 이용한 Kollidon VA 64에 포접된 아세클로페낙의 개선된 용출 거동

  • Yang, Jaewon (Dept. of BIN Fusion Technology, Polymer Fusion Research Center & Dept. of PolymerNano Science Technology, Chonbuk National University) ;
  • Park, Jin Young (Dept. of BIN Fusion Technology, Polymer Fusion Research Center & Dept. of PolymerNano Science Technology, Chonbuk National University) ;
  • Lee, Cheon Jung (Dept. of BIN Fusion Technology, Polymer Fusion Research Center & Dept. of PolymerNano Science Technology, Chonbuk National University) ;
  • Kim, Hye Min (Dept. of BIN Fusion Technology, Polymer Fusion Research Center & Dept. of PolymerNano Science Technology, Chonbuk National University) ;
  • Lee, Hyun Gu (Dept. of BIN Fusion Technology, Polymer Fusion Research Center & Dept. of PolymerNano Science Technology, Chonbuk National University) ;
  • Jang, Na Gum (Dept. of BIN Fusion Technology, Polymer Fusion Research Center & Dept. of PolymerNano Science Technology, Chonbuk National University) ;
  • Ko, Hyun Ah (Dept. of BIN Fusion Technology, Polymer Fusion Research Center & Dept. of PolymerNano Science Technology, Chonbuk National University) ;
  • Cho, Seon Ah (Dept. of BIN Fusion Technology, Polymer Fusion Research Center & Dept. of PolymerNano Science Technology, Chonbuk National University) ;
  • Yang, Dae Hyeok (Institute of Cell & Tissue Engineering, College of Medicine, The Catholic University of Korea) ;
  • Khang, Gilson (Dept. of BIN Fusion Technology, Polymer Fusion Research Center & Dept. of PolymerNano Science Technology, Chonbuk National University)
  • 양재원 (전북대학교 BIN융합공학과 고분자융합소재연구소, 고분자나노공학과) ;
  • 박진영 (전북대학교 BIN융합공학과 고분자융합소재연구소, 고분자나노공학과) ;
  • 이천중 (전북대학교 BIN융합공학과 고분자융합소재연구소, 고분자나노공학과) ;
  • 김혜민 (전북대학교 BIN융합공학과 고분자융합소재연구소, 고분자나노공학과) ;
  • 이현구 (전북대학교 BIN융합공학과 고분자융합소재연구소, 고분자나노공학과) ;
  • 장나금 (전북대학교 BIN융합공학과 고분자융합소재연구소, 고분자나노공학과) ;
  • 고현아 (전북대학교 BIN융합공학과 고분자융합소재연구소, 고분자나노공학과) ;
  • 조선아 (전북대학교 BIN융합공학과 고분자융합소재연구소, 고분자나노공학과) ;
  • 양대혁 (가톨릭대학교 의과대학 세포조직공학연구소) ;
  • 강길선 (전북대학교 BIN융합공학과 고분자융합소재연구소, 고분자나노공학과)
  • Received : 2014.02.06
  • Accepted : 2014.07.12
  • Published : 2015.01.25

Abstract

In order to improve the poor water solubility of aceclofenac, it was loaded into solid Kollidon VA 64 dispersion prepared by spray drying and rotary evaporation methods using different drug and polymer ratios. Morphology and physicochemical behavior of the aceclofenac loaded solid dispersions was analyzed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), and differential scanning calorimetry (DSC). Encapsulation efficiency and dissolution behavior in a simulated intestinal juice of aceclofenac in the solid dispersions was measured using HPLC and the latter was compared with that of the active pharmaceutical ingredient (API) and Airtal$^{(R)}$. It was demonstrated that two methods could significantly improve the dissolution behavior of aceclofenac.

난용성 약물인 아세클로페낙의 용해도를 개선하기 위해 약물과 고분자의 다른 비율을 사용하여 분무건조와 용매증발의 방법으로 Kollidon VA 64의 고체분산체를 제조하였다. 아세클로페낙을 포접하는 고체분산체의 형태학적, 물리화학적 분석을 하기 위해, 전자주사현미경(SEM), 푸리에변환 적외선분광법(FTIR), 시차주사 열량측정법(DSC) 등이 사용되었다. 포접률과 인공장액에서의 용출 거동은 HPLC를 사용하여 측정하였고, 비교를 위해 원약물과 시판제 Airtal$^{(R)}$이 사용되었다. 이것은 두 가지 방법에 따라 개선된 용출 거동을 나타내었다.

Keywords

Acknowledgement

Supported by : NRF

References

  1. J. S. Hwang, J. E. Ko, S. H. Kim, and K. M. Huh, Polymer(Korea), 36, 500 (2012).
  2. K. Dua, K. Pabreja, and M. V. Ramana, Acta Pharm., 60, 467 (2010).
  3. P. K. Gaur, S. Purohit, and S. Mishra, J. Biomater. Sci. Polym. Ed., 24, 2126 (2013). https://doi.org/10.1080/09205063.2013.828579
  4. M. Khandai, S. Chakraborty, P. Nayak, N. B. Krishna, G. Chakravarthi, B. Acharjya, and A. K. Ghosh, Curr. Drug Deliv., 9, 495 (2012). https://doi.org/10.2174/156720112802650725
  5. K. Karthikeyan, R. Lakra, R. Rajaram, and P. S. Korrapati, AAPS PharmSciTech., 13, 143 (2012). https://doi.org/10.1208/s12249-011-9731-x
  6. J. Y. Cho, Arch. Pharm. Res., 30, 64 (2007). https://doi.org/10.1007/BF02977780
  7. S. A. Syggelos, E. Giannopoulou, P. A. Gouvousis, A. P. Andonpoulos, A. J. Aletras, and E. Panagiotopoulos, Osteoarthr. Cartil., 15, 531 (2007). https://doi.org/10.1016/j.joca.2006.11.003
  8. M. S. Kim, S. J. Park, B. K. Gu, G. Khang, and C. H. Kim, Int. J. Tissue Regen., 2, 125 (2011)
  9. K. T. Kim, J. Y. Lee, M. Y. Lee, C. K. Song, and J Choi, J. Pharm. Invest., 41, 125 (2011). https://doi.org/10.4333/KPS.2011.41.3.125
  10. R. Carvalho, C. Fernandes, A. Afonso, and J. Cardoso, Cutan. Ocul. Toxicol., 30, 315 (2011). https://doi.org/10.3109/15569527.2011.573833
  11. J. A. Baird and L. S. Taylor, Pharm. Dev. Technol., 16, 201 (2011). https://doi.org/10.3109/10837450903584936
  12. T. T. Tran, P. H. Tran, J. Lim, J. B. Park, S. K. Choi, and B. J. Lee, Ther. Deliv., 1, 51 (2010). https://doi.org/10.4155/tde.10.3
  13. K. R. Chu, E. Lee, S. H. Jeong, and E. S. Park, Arch. Pharm. Res., 35, 1187 (2012). https://doi.org/10.1007/s12272-012-0709-3
  14. J. Park, W. Cho, K. H. Cha, J. Ahn, K. Han, and S. J. Hwang, Int. J. Pharm., 441, 50 (2013). https://doi.org/10.1016/j.ijpharm.2012.12.020
  15. K. T. Savjani, A. K. Gajjar, and J. K. Savjani, ISRN Pharm., 2012, 10 (2012).
  16. H. E. Kim, J. S. Hwang, S. H. Cho, Y. J. Kim, and K. M. Huh, Polymer(Korea), 36, 41 (2012).
  17. H. N. Park, J. B. Lee, and I. K. Kwon, Int. J. Tissue Regen., 1, 10 (2010).
  18. G. Sharma, W. Mueannoom, A. B. Buanz, K. M. Taylor, and S. Gaisford, Int. J. Pharm., 447, 165 (2013). https://doi.org/10.1016/j.ijpharm.2013.02.045
  19. V. B. Pokharkar and L. P. Mandpe, Powder Tech., 167, 20 (2006). https://doi.org/10.1016/j.powtec.2006.05.012
  20. A. Q. Low, J. Parmentier, Y. M. Khong, C. C. Chai, T. Y. Tun, J. E. Berania, X. Liu, R. Gokhale, and S. Y. Chan, Int. J. Pharm., 455, 138 (2013). https://doi.org/10.1016/j.ijpharm.2013.07.046
  21. A. L. Sarode, H. Sandhu, N. Shah, W. Malick, and H. Zia, Mol. Pharm., 10, 3665 (2013). https://doi.org/10.1021/mp400165b
  22. Y. Song, L. Wang, P. Yang, R. M. Wenslow, Jr., B. Tan, H. Zhang, and Z. Deng, J. Pharm. Sci., 102, 1915 (2013). https://doi.org/10.1002/jps.23538
  23. F. Tugcu-Demiroz, F. Acarturk, and D. Erdogan, Int. J. Pharm., (2013).
  24. J. S. Negi, P. Chattopadhyay, A. K. Sharma, and V. Ram, Arch. Pharm. Res., 37, 361 (2014). https://doi.org/10.1007/s12272-013-0154-y
  25. D. H. Yang, H. N. Park, and J. B. Lee, Int. J. Tissue Regen., 2, 119 (2011).
  26. T. Soni and N. Chotai, J. Young Pharm., 2, 21 (2010). https://doi.org/10.4103/0975-1483.62208
  27. R. Dreu, I. Ilic, and S. Srcic, Pharm. Dev. Technol., 16, 118 (2011). https://doi.org/10.3109/10837450903499382
  28. A. Mumtaz, A. A. Sattar, R. Nazir, and A. Naseem, Pak. J. Pharm. Sci., 26, 169 (2013).
  29. S. Chakraborty, M. Khandai, and A. K. Ghosh, Drug Deliver. Lett., 3, 79 (2013). https://doi.org/10.2174/2210303111303020001
  30. J. Yang, K. Grey, and J. Doney, Int. J. Pharmaceut., 384, 24 (2010). https://doi.org/10.1016/j.ijpharm.2009.09.035
  31. D. N. Bikiaris, Expert. Opin. Drug Del., 8, 1663 (2011). https://doi.org/10.1517/17425247.2011.618182

Cited by

  1. Bioavailability Enhancement of Olmesartan Medoxomil Using Hot-Melt Extrusion: In-Silico, In-Vitro, and In-Vivo Evaluation vol.21, pp.7, 2015, https://doi.org/10.1208/s12249-020-01780-3